

bedtools: a powerful toolset for genome arithmetic

Collectively, the bedtools utilities are a swiss-army knife of tools
for a wide-range of genomics analysis tasks. The most widely-used
tools enable genome arithmetic: that is, set theory on the genome. For
example, bedtools allows one to intersect, merge, count, complement,
and shuffle genomic intervals from multiple files in widely-used
genomic file formats such as BAM, BED, GFF/GTF, VCF. While each individual tool is designed to do a relatively simple task (e.g.,
intersect two interval files), quite sophisticated analyses can be conducted
by combining multiple bedtools operations on the UNIX command line.

bedtools is developed in the Quinlan laboratory [http://quinlanlab.org] at the University of Utah [http://www.utah.edu/] and benefits from fantastic contributions made by scientists worldwide.

Tutorial

	We have developed a fairly comprehensive tutorial [http://quinlanlab.org/tutorials/bedtools/bedtools.html] that demonstrates both the basics, as well as some more advanced examples of how bedtools can help you in your research. Please have a look.

	Robert Aboukhalil has developed sandbox.bio [https://sandbox.bio/] an excellent, web-based playground for the bedtools tutorial and other widely-used genomics tools.

Important notes

	As of version 2.28.0, bedtools now supports the CRAM format via the use of htslib [https://github.com/samtools/htslib]. Specify the reference genome associated with your CRAM file via the CRAM_REFERENCE environment variable. Bedtools will look for this environment variable when it needs to access sequence data from the CRAM file (e.g., bamtofastq).

	With the exception of BAM files, bedtools assumes all input files are TAB delimited.

	bedtools also assumes that all input files use UNIX line endings.

	Unless you use the -sorted option, bedtools currently does not support chromosomes larger than 512Mb

	When using the -sorted option with files whose chromosomes are not lexicographically sorted (e.g., sort -k1,1 -k2,2n for BED files), one must provide a genome file (-g) defining the expected chromosome order.

	bedtools requires that chromosome naming schemes are identical in files that you are comparing (e.g., ‘chr1’ in one file and ‘1’ in another won’t work).

	.fai files may be used as genome (-g) files.

Interesting Usage Examples

In addition, here are a few examples of how bedtools has been used for genome research. If you have interesting examples, please send them our way and we will add them to the list.

	Coverage analysis for targeted DNA capture [http://gettinggeneticsdone.blogspot.com/2014/03/visualize-coverage-exome-targeted-ngs-bedtools.html]. Thanks to Stephen Turner [https://twitter.com/genetics_blog].

	Measuring similarity of DNase hypersensitivity among many cell types [https://github.com/arq5x/bedtools-protocols/blob/master/bedtools.md#bp6--measuring-dataset-similarity]

	Extracting promoter sequences from a genome [http://www.biostars.org/p/17162/]

	Comparing intersections among many genome interval files [http://www.biostars.org/p/13516/]

	RNA-seq coverage analysis [http://www.cureffi.org/2013/11/18/an-mrna-seq-pipeline-using-gsnap-samtools-cufflinks-and-bedtools/]. Thanks to Erik Minikel [https://twitter.com/cureffi].

	Identifying targeted regions that lack coverage [https://twitter.com/aaronquinlan/status/421786507511205888]. Thanks to Brent Pedersen [https://twitter.com/brent_p].

	Calculating GC content for CCDS exons [http://www.biostars.org/p/47047/].

	Making a master table of ChromHMM tracks for multiple cell types [https://gist.github.com/arq5x/3138599].

Table of contents

	Overview

	Installation

	Quick start

	General usage

	Release History

	The BEDTools suite

	Example usage

	Advanced usage

	Tips and Tricks

	FAQ

	Related software

Performance

As of version 2.18, bedtools is substantially more scalable thanks to improvements we have made in the algorithm used to process datasets that are pre-sorted
by chromosome and start position. As you can see in the plots below, the speed and memory consumption scale nicely
with sorted data as compared to the poor scaling for unsorted data. The current version of bedtools intersect is as fast as (or slightly faster) than the bedops package’s bedmap which uses a similar algorithm for sorted data. The plots below represent counting the number of intersecting alignments from exome capture BAM files against CCDS exons.
The alignments have been converted to BED to facilitate comparisons to bedops. We compare to the bedmap --ec option because similar error checking is enforced by bedtools.

Note: bedtools could not complete when using 100 million alignments and the R-Tree algorithm used for unsorted data owing to a lack of memory.

[image: _images/speed-comparo.png]
[image: _images/memory-comparo.png]
Commands used:

bedtools sorted
$ bedtools intersect \
 -a ccds.exons.bed -b aln.bam.bed \
 -c \
 -sorted

bedtools unsorted
$ bedtools intersect \
 -a ccds.exons.bed -b aln.bam.bed \
 -c

bedmap (without error checking)
$ bedmap --echo --count --bp-ovr 1 \
 ccds.exons.bed aln.bam.bed

bedmap (no error checking)
$ bedmap --ec --echo --count --bp-ovr 1 \
 ccds.exons.bed aln.bam.bed

Brief example

Let’s imagine you have a BED file of ChiP-seq peaks from two different
experiments. You want to identify peaks that were observed in both experiments
(requiring 50% reciprocal overlap) and for those peaks, you want to find to
find the closest, non-overlapping gene. Such an analysis could be conducted
with two, relatively simple bedtools commands.

intersect the peaks from both experiments.
-f 0.50 combined with -r requires 50% reciprocal overlap between the
peaks from each experiment.
$ bedtools intersect -a exp1.bed -b exp2.bed -f 0.50 -r > both.bed

find the closest, non-overlapping gene for each interval where
both experiments had a peak
-io ignores overlapping intervals and returns only the closest,
non-overlapping interval (in this case, genes)
$ bedtools closest -a both.bed -b genes.bed -io > both.nearest.genes.txt

License

bedtools is freely available under a GNU Public License (Version 2).

Acknowledgments

To do.

Mailing list

If you have questions, requests, or bugs to report, please email the
bedtools mailing list [https://groups.google.com/forum/?fromgroups#!forum/bedtools-discuss]

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Overview

Overview

Background

The development of bedtools was motivated by a need for fast, flexible tools with which to compare large sets of genomic
features. Answering fundamental research questions with existing tools was either too slow or required modifications to the
way they reported or computed their results. We were aware of the utilities on the UCSC Genome Browser and Galaxy websites, as
well as the elegant tools available as part of Jim Kent’s monolithic suite of tools (“Kent source”). However, we found that
the web-based tools were too cumbersome when working with large datasets generated by current sequencing technologies.
Similarly, we found that the Kent source command line tools often required a local installation of the UCSC Genome Browser.
These limitations, combined with the fact that we often wanted an extra option here or there that wasn’t available with
existing tools, led us to develop our own from scratch. The initial version of bedtools was publicly released in the spring of
2009. The current version has evolved from our research experiences and those of the scientists using the suite over the last
year. The bedtools suite enables one to answer common questions of genomic data in a fast and reliable manner. The fact that
almost all the utilities accept input from “stdin” allows one to “stream / pipe” several commands together to facilitate more
complicated analyses. Also, the tools allow fine control over how output is reported. The initial version of bedtools
supported solely 6-column BED [http://genome.ucsc.edu/FAQ/FAQformat#format1] files. However, we have subsequently added support for sequence alignments in BAM [http://samtools.sourceforge.net/]
format, as well as for features in GFF [http://genome.ucsc.edu/FAQ/FAQformat#format3] , “blocked” BED format, and
VCF [http://www.1000genomes.org/wiki/Analysis/Variant%20Call%20Format/vcf-variant-call-format-version-41] format.
The tools are quite fast and typically finish in a matter of a few seconds, even for large datasets. This manual seeks to describe the behavior and
available functionality for each bedtool. Usage examples are scattered throughout the text, and formal examples are
provided in the last two sections, we hope that this document will give you a sense of the flexibility of
the toolkit and the types of analyses that are possible with bedtools. If you have further questions, please join the bedtools
discussion group, visit the Usage Examples on the Google Code site (usage, advanced usage), or take a look at the nascent
“Usage From the Wild” page.

Summary of available tools.

bedtools support a wide range of operations for interrogating and manipulating genomic features. The table below summarizes
the tools available in the suite.

	Utility

	Description

	annotate

	Annotate coverage of features from multiple files.

	bamtobed

	Convert BAM alignments to BED (& other) formats.

	bamtofastq

	Convert BAM records to FASTQ records.

	bed12tobed6

	Breaks BED12 intervals into discrete BED6 intervals.

	bedpetobam

	Convert BEDPE intervals to BAM records.

	bedtobam

	Convert intervals to BAM records.

	closest

	Find the closest, potentially non-overlapping interval.

	cluster

	Cluster (but don’t merge) overlapping/nearby intervals.

	complement

	Extract intervals _not_ represented by an interval file.

	coverage

	Compute the coverage over defined intervals.

	expand

	Replicate lines based on lists of values in columns.

	fisher

	Calculate Fisher statistic b/w two feature files.

	flank

	Create new intervals from the flanks of existing intervals.

	genomecov

	Compute the coverage over an entire genome.

	getfasta

	Use intervals to extract sequences from a FASTA file.

	groupby

	Group by common cols. & summarize oth. cols. (~ SQL “groupBy”)

	igv

	Create an IGV snapshot batch script.

	intersect

	Find overlapping intervals in various ways.

	jaccard

	Calculate the Jaccard statistic b/w two sets of intervals.

	links

	Create a HTML page of links to UCSC locations.

	makewindows

	Make interval “windows” across a genome.

	map

	Apply a function to a column for each overlapping interval.

	maskfasta

	Use intervals to mask sequences from a FASTA file.

	merge

	Combine overlapping/nearby intervals into a single interval.

	multicov

	Counts coverage from multiple BAMs at specific intervals.

	multiinter

	Identifies common intervals among multiple interval files.

	nuc

	Profile the nucleotide content of intervals in a FASTA file.

	overlap

	Computes the amount of overlap from two intervals.

	pairtobed

	Find pairs that overlap intervals in various ways.

	pairtopair

	Find pairs that overlap other pairs in various ways.

	random

	Generate random intervals in a genome.

	reldist

	Calculate the distribution of relative distances b/w two files.

	tools/sample

	Sample random records from file using reservoir sampling.

	shift

	Adjust the position of intervals.

	shuffle

	Randomly redistribute intervals in a genome.

	slop

	Adjust the size of intervals.

	sort

	Order the intervals in a file.

	tools/spacing

	Sample random records from file using reservoir sampling.

	tools/split

	Split a file into multiple files with equal records or base pairs.

	subtract

	Remove intervals based on overlaps b/w two files.

	tag

	Tag BAM alignments based on overlaps with interval files.

	unionbedg

	Combines coverage intervals from multiple BEDGRAPH files.

	window

	Find overlapping intervals within a window around an interval.

Fundamental concepts.

What are genome features and how are they represented?

Throughout this manual, we will discuss how to use bedtools to manipulate, compare and ask questions of genome “features”. Genome features can be functional elements (e.g., genes), genetic polymorphisms (e.g.
SNPs, INDELs, or structural variants), or other annotations that have been discovered or curated by genome sequencing groups or genome browser groups. In addition, genome features can be custom annotations that
an individual lab or researcher defines (e.g., my novel gene or variant).

The basic characteristics of a genome feature are the chromosome or scaffold on which the feature “resides”, the base pair on which the
feature starts (i.e. the “start”), the base pair on which feature ends (i.e. the “end”), the strand on which the feature exists (i.e. “+” or “-“), and the name of the feature if one is applicable.

The two most widely used formats for representing genome features are the BED (Browser Extensible Data) and GFF (General Feature Format) formats. bedtools was originally written to work exclusively with genome features
described using the BED format, but it has been recently extended to seamlessly work with BED, GFF and VCF files.

Existing annotations for the genomes of many species can be easily downloaded in BED and GFF
format from the UCSC Genome Browser’s “Table Browser” (http://genome.ucsc.edu/cgi-bin/hgTables?command=start) or from the “Bulk Downloads” page (http://hgdownload.cse.ucsc.edu/downloads.html). In addition, the
Ensemble Genome Browser contains annotations in GFF/GTF format for many species (http://www.ensembl.org/info/data/ftp/index.html)

Overlapping / intersecting features.

Two genome features (henceforth referred to as “features”) are said to overlap or intersect if they share at least one base in common.
In the figure below, Feature A intersects/overlaps Feature B, but it does not intersect/overlap Feature C.

TODO: place figure here

Comparing features in file “A” and file “B”.

The previous section briefly introduced a fundamental naming convention used in bedtools. Specifically, all bedtools that compare features contained in two distinct files refer to one file as feature set “A” and the other file as feature set “B”. This is mainly in the interest of brevity, but it also has its roots in set theory.
As an example, if one wanted to look for SNPs (file A) that overlap with exons (file B), one would use bedtools intersect in the following manner:

bedtools intersect –a snps.bed –b exons.bed

There are two exceptions to this rule: 1) When the “A” file is in BAM format, the “-abam” option must be used. For example:

bedtools intersect –abam alignedReads.bam –b exons.bed

And 2) For tools where only one input feature file is needed, the “-i” option is used. For example:

bedtools merge –i repeats.bed

BED starts are zero-based and BED ends are one-based.

bedtools users are sometimes confused by the way the start and end of BED features are represented. Specifically, bedtools uses the UCSC Genome Browser’s internal database convention of making the start position 0-based and the end position 1-based: (http://genome.ucsc.edu/FAQ/FAQtracks#tracks1)
In other words, bedtools interprets the “start” column as being 1 basepair higher than what is represented in the file. For example, the following BED feature represents a single base on chromosome 1; namely, the 1st base:

chr1 0 1 first_base

Why, you might ask? The advantage of storing features this way is that when computing the length of a feature, one must simply subtract the start from the end. Were the start position 1-based,
the calculation would be (slightly) more complex (i.e. (end-start)+1). Thus, storing BED features this way reduces the computational burden.

GFF starts and ends are one-based.

In contrast, the GFF format uses 1-based coordinates for both the start and the end positions. bedtools is aware of this and adjusts the positions accordingly.
In other words, you don’t need to subtract 1 from the start positions of your GFF features for them to work correctly with bedtools.

VCF coordinates are one-based.

The VCF format uses 1-based coordinates. As in GFF, bedtools is aware of this and adjusts the positions accordingly.
In other words, you don’t need to subtract 1 from the start positions of your VCF features for them to work correctly with bedtools.

File B is loaded into memory (most of the time).

Whenever a bedtool compares two files of features, the “B” file is loaded into memory. By contrast, the “A” file is processed line by line and compared with the features from B.
Therefore to minimize memory usage, one should set the smaller of the two files as the B file. One salient example is the comparison of aligned sequence reads from a
current DNA sequencer to gene annotations. In this case, the aligned sequence file (in BED format) may have tens of millions of features (the sequence alignments),
while the gene annotation file will have tens of thousands of features. In this case, it is wise to sets the reads as file A and the genes as file B.

Feature files must be tab-delimited.

This is rather self-explanatory. While it is possible to allow BED files to be space-delimited, we have decided to require tab delimiters for three reasons:

	By requiring one delimiter type, the processing time is minimized.

	Tab-delimited files are more amenable to other UNIX utilities.

	GFF files can contain spaces within attribute columns. This complicates the use of space-delimited files as spaces must therefore be treated specially depending on the context.

All bedtools allow features to be “piped” via standard input.

In an effort to allow one to combine multiple bedtools and other UNIX utilities into more complicated “pipelines”, all bedtools allow features
to be passed to them via standard input. Only one feature file may be passed to a bedtool via standard input.
The convention used by all bedtools is to set either file A or file B to “stdin” or “-”. For example:

cat snps.bed | bedtools intersect –a stdin –b exons.bed
cat snps.bed | bedtools intersect –a - –b exons.bed

In addition, all bedtools that simply require one main input file (the -i file) will assume that input is
coming from standard input if the -i parameter is ignored. For example, the following are equivalent:

cat snps.bed | bedtools sort –i stdin
cat snps.bed | bedtools sort

Most bedtools write their results to standard output.

To allow one to combine multiple bedtools and other UNIX utilities into more complicated “pipelines”,
most bedtools report their output to standard output, rather than to a named file. If one wants to write the output to a named file, one can use the UNIX “file redirection” symbol “>” to do so.
Writing to standard output (the default):

bedtools intersect –a snps.bed –b exons.bed
chr1 100100 100101 rs233454
chr1 200100 200101 rs446788
chr1 300100 300101 rs645678

Writing to a file:

bedtools intersect –a snps.bed –b exons.bed > snps.in.exons.bed

cat snps.in.exons.bed
chr1 100100 100101 rs233454
chr1 200100 200101 rs446788
chr1 300100 300101 rs645678

What is a “genome” file?

Some of the bedtools (e.g., genomecov, complement, slop) need to know the size of
the chromosomes for the organism for which your BED files are based. When using the UCSC Genome
Browser, Ensemble, or Galaxy, you typically indicate which species / genome build you are working.
The way you do this for bedtools is to create a “genome” file, which simply lists the names of the
chromosomes (or scaffolds, etc.) and their size (in basepairs).
Genome files must be tab-delimited and are structured as follows (this is an example for C. elegans):

chrI 15072421
chrII 15279323
...
chrX 17718854
chrM 13794

bedtools includes predefined genome files for human and mouse in the /genomes directory included
in the bedtools distribution. Additionally, the “chromInfo” files/tables available from the UCSC
Genome Browser website are acceptable. For example, one can download the hg19 chromInfo file here:
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/chromInfo.txt.gz

Paired-end BED files (BEDPE files).

We have defined a new file format (BEDPE) to concisely describe disjoint genome features, such as
structural variations or paired-end sequence alignments. We chose to define a new format because the
existing BED block format (i.e. BED12) does not allow inter-chromosomal feature definitions. Moreover,
the BED12 format feels rather bloated when one want to describe events with only two blocks.

Use “-h” for help with any bedtool.

Rather straightforward. If you use the “-h” option with any bedtool, a full menu of example usage
and available options (when applicable) will be reported.

BED features must not contain negative positions.

bedtools will typically reject BED features that contain negative positions. In special cases, however,
BEDPE positions may be set to -1 to indicate that one or more ends of a BEDPE feature is unaligned.

The start position must be <= to the end position.

bedtools will reject BED features where the start position is greater than the end position.

Headers are allowed in GFF and BED files

bedtools will ignore headers at the beginning of BED and GFF files. Valid header lines begin with a
“#” symbol, the work “track”, or the word “browser”. For example, the following examples are valid
headers for BED or GFF files:

track name=aligned_read description="Illumina aligned reads”
chr5 100000 500000 read1 50 +
chr5 2380000 2386000 read2 60 -

#This is a fascinating dataset
chr5 100000 500000 read1 50 +
chr5 2380000 2386000 read2 60 -

browser position chr22:1-20000
chr5 100000 500000 read1 50 +
chr5 2380000 2386000 read2 60 -

GZIP support: BED, GFF, VCF, and BEDPE file can be “gzipped”

bedtools will process gzipped BED, GFF, VCF and BEDPE files in the same manner as
uncompressed files. Gzipped files are auto-detected thanks to a helpful contribution from Gordon
Assaf.

Support for “split” or “spliced” BAM alignments and “blocked” BED features

As of Version 2.8.0, five bedtools (intersect, coverage, genomecov,
bamToBed, and bed12ToBed6) can properly handle “split”/”spliced” BAM alignments (i.e., having an
“N” CIGAR operation) and/or “blocked” BED (aka BED12) features.

intersect, coverage, and genomecov will optionally handle “split” BAM and/or
“blocked” BED by using the -split option. This will cause intersects or coverage to be computed only
for the alignment or feature blocks. In contrast, without this option, the intersects/coverage would be
computed for the entire “span” of the alignment or feature, regardless of the size of the gaps between
each alignment or feature block. For example, imagine you have a RNA-seq read that originates from
the junction of two exons that were spliced together in a mRNA. In the genome, these two exons
happen to be 30Kb apart. Thus, when the read is aligned to the reference genome, one portion of the
read will align to the first exon, while another portion of the read will align ca. 30Kb downstream to the
other exon. The corresponding CIGAR string would be something like (assuming a 76bp read):
30M*3000N*46M. In the genome, this alignment “spans” 3076 bp, yet the nucleotides in the sequencing
read only align “cover” 76bp. Without the -split option, coverage or overlaps would be reported for the
entire 3076bp span of the alignment. However, with the -split option, coverage or overlaps will only
be reported for the portions of the read that overlap the exons (i.e. 30bp on one exon, and
46bp on the other).

Using the -split option with bamToBed causes “spliced/split” alignments to be reported in BED12
format. Using the -split option with bed12tobed6 causes “blocked” BED12 features to be reported in
BED6 format.

Writing uncompressed BAM output.

When working with a large BAM file using a complex set of tools in a pipe/stream, it is advantageous
to pass uncompressed BAM output to each downstream program. This minimizes the amount of time
spent compressing and decompressing output from one program to the next. All bedtools that create
BAM output (e.g. intersect, window) will now optionally create uncompressed BAM output
using the -ubam option.

Implementation and algorithmic notes.

bedtools was implemented in C++ and makes extensive use of data structures and fundamental
algorithms from the Standard Template Library (STL). Many of the core algorithms are based upon the
genome binning algorithm described in the original UCSC Genome Browser paper (Kent et al, 2002).
The tools have been designed to inherit core data structures from central source files, thus allowing
rapid tool development and deployment of improvements and corrections. Support for BAM files is
made possible through Derek Barnett’s elegant C++ API called BamTools.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Installation

Installation

bedtools is intended to run in a “command line” environment on UNIX, LINUX
and Apple OS X operating systems. Installing bedtools involves either
downloading the source code and compiling it manually, or installing stable
release from package managers such as
homebrew (for OS X) [http://mxcl.github.com/homebrew/].

Installing stable releases

Downloading a pre-compiled binary

Note

	The following approach will only work for Linux (non-OSX) systems.

 Quick start

Quick start

Install bedtools

curl http://bedtools.googlecode.com/files/BEDTools.<version>.tar.gz > BEDTools.tar.gz
tar -zxvf BEDTools.tar.gz
cd BEDTools
make
sudo cp bin/* /usr/local/bin/

Use bedtools

Below are examples of typical bedtools usage. Using the “-h” option with any
bedtools will report a list of all command line options.

Report the base-pair overlap between the features in two BED files.

bedtools intersect -a reads.bed -b genes.bed

Report those entries in A that overlap NO entries in B. Like “grep -v”

bedtools intersect -a reads.bed -b genes.bed -v

Read BED A from STDIN. Useful for stringing together commands. For example,
find genes that overlap LINEs but not SINEs.

bedtools intersect -a genes.bed -b LINES.bed | \
 bedtools intersect -a stdin -b SINEs.bed -v

Find the closest ALU to each gene.

bedtools closest -a genes.bed -b ALUs.bed

Merge overlapping repetitive elements into a single entry, returning the number of entries merged.

bedtools merge -i repeatMasker.bed -n

Merge nearby repetitive elements into a single entry, so long as they are within 1000 bp of one another.

bedtools merge -i repeatMasker.bed -d 1000

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 General usage

General usage

Supported file formats

BED format

As described on the UCSC Genome Browser website (see link below), the browser extensible data (BED) format is a concise and
flexible way to represent genomic features and annotations. The BED format description supports up to
12 columns, but only the first 3 are required for the UCSC browser, the Galaxy browser and for
bedtools. bedtools allows one to use the “BED12” format (that is, all 12 fields listed below).
However, only intersectBed, coverageBed, genomeCoverageBed, and bamToBed will obey the BED12
“blocks” when computing overlaps, etc., via the “-split” option. For all other tools, the last six columns
are not used for any comparisons by the bedtools. Instead, they will use the entire span (start to end)
of the BED12 entry to perform any relevant feature comparisons. The last six columns will be reported
in the output of all comparisons.

The file description below is modified from: http://genome.ucsc.edu/FAQ/FAQformat#format1.

	chrom - The name of the chromosome on which the genome feature exists.

	Any string can be used. For example, “chr1”, “III”, “myChrom”, “contig1112.23”.

	This column is required.

	start - The zero-based starting position of the feature in the chromosome.

	The first base in a chromosome is numbered 0.

	The start position in each BED feature is therefore interpreted to be 1 greater than the start position listed in the feature. For example, start=9, end=20 is interpreted to span bases 10 through 20,inclusive.

	This column is required.

	end - The one-based ending position of the feature in the chromosome.

	The end position in each BED feature is one-based. See example above.

	This column is required.

	name - Defines the name of the BED feature.

	Any string can be used. For example, “LINE”, “Exon3”, “HWIEAS_0001:3:1:0:266#0/1”, or “my_Feature”.

	This column is optional.

	score - The UCSC definition requires that a BED score range from 0 to 1000, inclusive. However, bedtools allows any string to be stored in this field in order to allow greater flexibility in annotation features. For example, strings allow scientific notation for p-values, mean enrichment values, etc. It should be noted that this flexibility could prevent such annotations from being correctly displayed on the UCSC browser.

	Any string can be used. For example, 7.31E-05 (p-value), 0.33456 (mean enrichment value), “up”, “down”, etc.

	This column is optional.

	strand - Defines the strand - either ‘+’ or ‘-‘.

	This column is optional.

	thickStart - The starting position at which the feature is drawn thickly.

	Allowed yet ignored by bedtools.

	thickEnd - The ending position at which the feature is drawn thickly.

	Allowed yet ignored by bedtools.

	itemRgb - An RGB value of the form R,G,B (e.g. 255,0,0).

	Allowed yet ignored by bedtools.

	blockCount - The number of blocks (exons) in the BED line.

	Allowed yet ignored by bedtools.

	blockSizes - A comma-separated list of the block sizes.

	blockStarts - A comma-separated list of block starts.

	Allowed yet ignored by bedtools.

bedtools requires that all BED input files (and input received from stdin) are tab-delimited. The following types of BED files are supported by bedtools:

	BED3: A BED file where each feature is described by chrom, start, and end.

For example: chr1 11873 14409

	BED4: A BED file where each feature is described by chrom, start, end, and name.

For example: chr1 11873 14409 uc001aaa.3

	BED5: A BED file where each feature is described by chrom, start, end, name, and score.

For example: chr1 11873 14409 uc001aaa.3 0

	BED6: A BED file where each feature is described by chrom, start, end, name, score, and strand.

For example: chr1 11873 14409 uc001aaa.3 0 +

	BED12: A BED file where each feature is described by all twelve columns listed above.

For example: chr1 11873 14409 uc001aaa.3 0 + 11873 11873 0 3 354,109,1189, 0,739,1347,

BEDPE format

We have defined a new file format, the browser extensible data paired-end (BEDPE) format, in order to concisely describe disjoint genome features,
such as structural variations or paired-end sequence alignments. We chose to define a new format
because the existing “blocked” BED format (a.k.a. BED12) does not allow inter-chromosomal feature
definitions. In addition, BED12 only has one strand field, which is insufficient for paired-end sequence
alignments, especially when studying structural variation.

The BEDPE format is described below. The description is modified from: http://genome.ucsc.edu/FAQ/FAQformat#format1.

	chrom1 - The name of the chromosome on which the first end of the feature exists.

	Any string can be used. For example, “chr1”, “III”, “myChrom”, “contig1112.23”.

	This column is required.

	Use “.” for unknown.

	start1 - The zero-based starting position of the first end of the feature on chrom1.

	The first base in a chromosome is numbered 0.

	As with BED format, the start position in each BEDPE feature is therefore interpreted to be 1 greater than the start position listed in the feature. This column is required.

	Use -1 for unknown.

	end1 - The one-based ending position of the first end of the feature on chrom1.

	The end position in each BEDPE feature is one-based.

	This column is required.

	Use -1 for unknown.

	chrom2 - The name of the chromosome on which the second end of the feature exists.

	Any string can be used. For example, “chr1”, “III”, “myChrom”, “contig1112.23”.

	This column is required.

	Use “.” for unknown.

	start2 - The zero-based starting position of the second end of the feature on chrom2.

	The first base in a chromosome is numbered 0.

	As with BED format, the start position in each BEDPE feature is therefore interpreted to be 1 greater than the start position listed in the feature. This column is required.

	Use -1 for unknown.

	end2 - The one-based ending position of the second end of the feature on chrom2.

	The end position in each BEDPE feature is one-based.

	This column is required.

	Use -1 for unknown.

	name - Defines the name of the BEDPE feature.

	Any string can be used. For example, “LINE”, “Exon3”, “HWIEAS_0001:3:1:0:266#0/1”, or “my_Feature”.

	This column is optional.

	score - The UCSC definition requires that a BED score range from 0 to 1000, inclusive. However, bedtools allows any string to be stored in this field in order to allow greater flexibility in annotation features. For example, strings allow scientific notation for p-values, mean enrichment values, etc. It should be noted that this flexibility could prevent such annotations from being correctly displayed on the UCSC browser.

	Any string can be used. For example, 7.31E-05 (p-value), 0.33456 (mean enrichment value), “up”, “down”, etc.

	This column is optional.

	strand1 - Defines the strand for the first end of the feature. Either ‘+’ or ‘-‘.

	This column is optional.

	Use “.” for unknown.

	strand2 - Defines the strand for the second end of the feature. Either ‘+’ or ‘-‘.

	This column is optional.

	Use “.” for unknown.

	Any number of additional, user-defined fields - bedtools allows one to add as many additional fields to the normal, 10-column BEDPE format as necessary. These columns are merely “passed through” pairToBed and pairToPair and are not part of any analysis. One would use these additional columns to add extra information (e.g., edit distance for each end of an alignment, or “deletion”, “inversion”, etc.) to each BEDPE feature.

	These additional columns are optional.

Entries from an typical BEDPE file:

chr1 100 200 chr5 5000 5100 bedpe_example1 30 + -
chr9 1000 5000 chr9 3000 3800 bedpe_example2 100 + -

Entries from a BEDPE file with two custom fields added to each record:

chr1 10 20 chr5 50 60 a1 30 + - 0 1
chr9 30 40 chr9 80 90 a2 100 + - 2 1

GFF format

The GFF format is described on the Sanger Institute’s website (http://www.sanger.ac.uk/resources/software/gff/spec.html). The GFF description below is modified from the definition at this URL. All nine columns in the GFF format description are required by bedtools.

	seqname - The name of the sequence (e.g. chromosome) on which the feature exists.

	Any string can be used. For example, “chr1”, “III”, “myChrom”, “contig1112.23”.

	This column is required.

	source - The source of this feature. This field will normally be used to indicate the program making the prediction, or if it comes from public database annotation, or is experimentally verified, etc.

	This column is required.

	feature - The feature type name. Equivalent to BED’s name field.

	Any string can be used. For example, “exon”, etc.

	This column is required.

	start - The one-based starting position of feature on seqname.

	This column is required.

	bedtools accounts for the fact the GFF uses a one-based position and BED uses a zero-based start position.

	end - The one-based ending position of feature on seqname.

	This column is required.

	score - A score assigned to the GFF feature. Like BED format, bedtools allows any string to be stored in this field in order to allow greater flexibility in annotation features. We note that this differs from the GFF definition in the interest of flexibility.

	This column is required.

	strand - Defines the strand. Use ‘+’, ‘-’ or ‘.’

	This column is required.

	frame - The frame of the coding sequence. Use ‘0’, ‘1’, ‘2’, or ‘.’.

	This column is required.

	attribute - Taken from http://www.sanger.ac.uk/resources/software/gff/spec.html: From version 2 onwards, the attribute field must have an tag value structure following the syntax used within objects in a .ace file, flattened onto one line by semicolon separators. Free text values must be quoted with double quotes. Note: all non-printing characters in such free text value strings (e.g. newlines, tabs, control characters, etc) must be explicitly represented by their C (UNIX) style backslash-escaped representation (e.g. newlines as ‘n’, tabs as ‘t’). As in ACEDB, multiple values can follow a specific tag. The aim is to establish consistent use of particular tags, corresponding to an underlying implied ACEDB model if you want to think that way (but acedb is not required).

	This column is required.

An entry from an example GFF file :

seq1 BLASTX similarity 101 235 87.1 + 0 Target "HBA_HUMAN" 11 55 ;
E_value 0.0003 dJ102G20 GD_mRNA coding_exon 7105 7201 . - 2 Sequence
"dJ102G20.C1.1"

Genome file format

Some of the bedtools (e.g., genomeCoverageBed, complementBed, slopBed) need to know the size of
the chromosomes for the organism for which your BED files are based. When using the UCSC Genome
Browser, Ensemble, or Galaxy, you typically indicate which which species/genome build you are
working. The way you do this for bedtools is to create a “genome” file, which simply lists the names of
the chromosomes (or scaffolds, etc.) and their size (in basepairs).

Genome files must be tab-delimited and are structured as follows (this is an example for C. elegans):

chrI 15072421
chrII 15279323
...
chrX 17718854
chrM 13794

bedtools includes pre-defined genome files for human and mouse in the /genomes directory included
in the bedtools distribution.

One can also create a suitable genome file by running samtools faidx on the appropriate
FASTA reference genome. Then use the resulting .fai file as a genome file, as bedtools will only
care about the first two columns, which define the chromosome name and length.
For example:

download GRCh38
wget ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/GRCh38_reference_genome/GRCh38_full_analysis_set_plus_decoy_hla.fa
create an index of it
samtools faidx GRCh38_full_analysis_set_plus_decoy_hla.fa
use the .fai index as a genome file with bedtools
bedtools complement my.grch38.bed -g GRCh38_full_analysis_set_plus_decoy_hla.fa.fai

SAM/BAM format

The SAM / BAM format is a powerful and widely-used format for storing sequence alignment data (see
http://samtools.sourceforge.net/ for more details). It has quickly become the standard format to which
most DNA sequence alignment programs write their output. Currently, the following bedtools
support input in BAM format: intersect, window, coverage, genomecov,
pairtobed, bamtobed. Support for the BAM format in bedtools allows one to (to name a few):
compare sequence alignments to annotations, refine alignment datasets, screen for potential mutations
and compute aligned sequence coverage.

VCF format

The Variant Call Format (VCF) was conceived as part of the 1000 Genomes Project as a standardized
means to report genetic variation calls from SNP, INDEL and structural variant detection programs
(see http://www.1000genomes.org/wiki/doku.php?id=1000_genomes:analysis:vcf4.0 for details).
bedtools now supports the latest version of this format (i.e, Version 4.0). As a result, bedtools can
be used to compare genetic variation calls with other genomic features.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 Release History

Release History

Version 2.30.0 (23-Dec-2021)

	Thanks to Hao Hou (github: @38), we have substantial improvements in the speed associated with parsing input files and in printing results. It turns our that these tasks consume a large proportion of run time, especially as input files increase in size. These changes result in a 2-3X improvement in speed, depending on input types, options, etc.

	Thanks to John Marshall (github: @jmarshall), who improved the stability and cleanliness of the code used for random number generation. These changes also squash a bug that arises on Debian systems.

	John Marshall cleaned up some lingering data type problems in the slop tool.

	Thanks to @gringer for adding teh -ignoreD option to the genomecov tool, which allows D CIGAR operations to be ignored when calculating coverage. This is useful for long-read technologies with high INDEL error rates.

	Added a fix for a bug [https://github.com/arq5x/bedtools2/issues/865] that did not properly handle the splitting of intervals in BED12 records with one block.

	Thanks to John Marshall (github: @jmarshall), we have addressed numerical instability issues in the fisher tool.

	Thanks to Hao Hou (github: @38), reference genomes can be read as an environment variable (CRAM_REFERENCE) when using CRAM input files.

	Added a -rna option to the getfasta tool to allow support for RNA genomes.

	Thanks to Hao Hou (github: @38), we fixed input file format detection bugs arising in ZSH.

	Thanks to Josh Shapiro (github:@jashapiro) for clarifying a confusing inconcistency in the documentation for the coverage tool.

	Thanks to Hao Hou (github: @38), we suppressed unnecessary warnings when reading GZIPP’ed files.

	Thanks to Hao Hou (github: @38), we fixed an overflow bug in the shuffle tool.

	Thanks to Hao Hou (github: @38), we fixed an data type bug in the shift tool.

	Thanks to John Marshall (github: @jmarshall) and Hao Hou (github: @38), we have cleaned up the internal support for htslib.

Version 2.29.2 (17-Dec-2019)

	Fixed a bug [https://github.com/arq5x/bedtools2/issues/803] that mistakenly removed a BAM/CRAM header line (sorting criteria).

Version 2.29.1 (9-Dec-2019)

	Fixed a bug [https://github.com/arq5x/bedtools2/issues/773] that now allows blocked intersection to be counted based on unique base pairs of overlap. The resolution for issue 750 [https://github.com/arq5x/bedtools2/issues/750] in version 2.29.0 mistakenly allowed for fractional overlap to be counted based upon redundant overlap.

	Moved to Github Continuous Integration for automatic testing.

	Fixed a bug [https://github.com/arq5x/bedtools2/issues/799] that injected erroneous quality values with BAM records had no valid quality values.

	Fixed a bug [https://github.com/arq5x/bedtools2/issues/609] that destroyed backwards compatibility in the getfasta tool. Thanks to Torsten Seeman for reporting this.

	Fixed a corner case bug [https://github.com/arq5x/bedtools2/issues/711] in the reldist tool.

	Fixed a bug [https://github.com/arq5x/bedtools2/issues/788] in the bedtobam tool that caused the last character in read names to be removed.

	Fixed a bug [https://github.com/arq5x/bedtools2/issues/779] causing a segfault in the jaccard tool.

	Fixed a bug [https://github.com/arq5x/bedtools2/issues/777] causing a corner case issue in the way coordinates are reported in the flank tool.

Version 2.29.0 (3-Sep-2019)

	Added a new -C option to the intersect tool that separately reports the count of intersections observed for each database (-b) file given. Formerly, the -c option reported to sum of all intersections observed across all database files.

	Fixed an important bug [https://github.com/arq5x/bedtools2/issues/750] in intersect that prevented some split reads from being counted properly with using the -split option with the -f option.

	Fixed a bug in shuffle such that shuffled regions should have the same strand as the chose -incl region.

	Added a new -L option to L`imit the output of the `complement tool to solely the chromosomes that are represented in the -i file.

	Fixed a regression in the multicov tool introduced in 2.28 that caused incorrect counts.

	Added support for multi-mapping reads in the bamtofastq tool.

	Fixed a bug [https://github.com/arq5x/bedtools2/issues/301] that prevented the “window” tool from properly adding interval “slop” to BAM records.

	Fixed a bug [https://github.com/arq5x/bedtools2/issues/195] that caused the slop tool to not truncate an interval’s end coordinate when it overlapped the end of a chromosome.

	Added support for the “=” and “X” CIGAR operations to bamtobed.

	Various other minor bug fixes and improvements to documentation.

Version 2.28.0 (23-Mar-2019)

	Included support for htslib to enable CRAM support and long-term stability (Thanks to Hao Hou!)

	Included support for genomes with large chromosomes by moving to 64-bit integeres throughout the code base. Thanks to Brent Pedersen and John Marshall!

	We now provide a statically-linked binary for LINUX (not OSX) systems.

	Various minor bug fixes.

Version 2.27.0 (6-Dec-2017)

	Fixed a big memory leak and algorithmic flaw in the split option. Thanks to Neil Kindlon!

	Resolved compilation errors on OSX High Sierra. Many thanks to @jonchang!

	Fixed a bug in the shift tool that caused some intervals to exceed the end of the chromosome. Thanks to @wlholtz

	Fixed major bug in groupby that prevented proper functionality.

	Speed improvements to the shuffle tool.

	Bug fixes to the p-value calculation in the fisher tool. Thanks to Brent Pedersen.

	Allow BED headers to start with chrom or chr

	Fixes to the “k-closest” functionality in the closest tool. Thanks to Neil Kindlon.

	Fixes to the output of the freqasc, freqdesc, distinct_sort_num and distinct_sort, and num_desc operations in the groupby tool. Thanks to @ghuls.

	Many minor bug fixes and compilation improvements from Luke Goodsell.

	Added the -fullHeader option to the maskfasta tool. Thanks to @ghuls.

	Many bug fixes and performance improvements from John Marshall.

	Fixed bug in the -N/-f behavior in subtract.

	Full support for .fai files as genome (-g) files.

	Many other minor bug fixes and functionality improvements.

Version 2.26.0 (7-July-2016)

	Fixed a major memory leak when using -sorted. Thanks to Emily Tsang and Stephen Montgomery.

	Fixed a bug for BED files containing a single record with no newline. Thanks to @jmarshall.

	Fixed a bug in the contigency table values for thr fisher tool.

	The getfasta tool includes name, chromosome and position in fasta headers when the -name option is used. Thanks to @rishavray.

	Fixed a bug that now forces the coverage tool to process every record in the -a file.

	Fixed a bug preventing proper processing of BED files with consecutive tabs.

	VCF files containing structural variants now infer SV length from either the SVLEN or END INFO fields. Thanks to Zev Kronenberg.

	Resolve off by one bugs when intersecting GFF or VCF files with BED files.

	The shuffle tool now uses roulette wheel sampling to shuffle to -incl regions based upon the size of the interval. Thanks to Zev Kronenberg and Michael Imbeault.

	Fixed a bug in coverage that prevented correct calculation of depth when using the -split option.

	The shuffle tool warns when an interval exceeds the maximum chromosome length.

	The complement tool better checks intervals against the chromosome lengths.

	Fixes for stddev, min, and max operations. Thanks to @jmarshall.

	Enabled stdev, sstdev, freqasc, and freqdesc options for groupby.

	Allow -s and -w to be used in any order for makewindows.

	Added new -bedOut option to getfasta.

	The -r option forces the -F value for intersect.

	Add -pc option to the genomecov tool, allowing coverage to be calculated based upon paired-end fragments.

Version 2.25.0 (3-Sept-2015)

	Added new -F option that allows one to set the minimum fraction of overlap required for the B interval. This complements the functionality of the -f option.Available for intersect, coverage, map, subtract, and jaccard.

	Added new -e option that allows one to require that the minimum fraction overlap is achieved in either A _OR_ B, not A _AND_ B which is the behavior of the -r option. Available for intersect, coverage, map, subtract, and jaccard.

	Fixed a longstanding bug that prevented genomecov from reporting chromosomes that lack a single interval.

	Modified a src directory called “aux” to “driver” to prevent compilation errors on Windows machines. Thanks very much to John Marshall.

	Fixed a regression that caused the coverage tool to complain if BED files had less than 5 columns.

	Fixed a variable overload bug that prevented compilation on Debian machines.

	Speedups to the groupby tool.

	New -delim option for the groupby tool.

	Fixed a bug in map that prevented strand-specifc overlaps from being reported when using certain BEDPLUS formats.

	Prevented excessive memory usage when not using pre-sorted input.

Version 2.24.0 (27-May-2015)

	The coverage tool now takes advantage of pre-sorted intervals via the -sorted option. This allows the coverage tool to be much faster, use far less memory, and report coverage for intervals in their original order in the input file.

	We have changed the behavior of the coverage tool such that it is consistent with the other tools. Specifically, coverage is now computed for the intervals in the A file based on the overlaps with the B file, rather than vice versa.

	The subtract tool now supports pre-sorted data via the -sorted option and is therefore much faster and scalable.

	The -nonamecheck option provides greater tolerance for chromosome labeling when using the -sorted option.

	Support for multiple SVLEN tags in VCF format, and fixed a bug that failed to process SVLEN tags coming at the end of a VCF INFO field.

	Support for reverse complementing IUPAC codes in the getfasta tool.

	Provided greater flexibility for “BED+” files, where the first 3 columns are chrom, start, and end, and the remaining columns are free-form.

	We now detect stale FAI files and recreate an index thanks to a fix from @gtamazian.

	New feature from Pierre Lindenbaum allowing the sort tool to sort files based on the chromosome order in a faidx file.

	Eliminated multiple compilation warnings thanks to John Marshall.

	Fixed bug in handling INS variants in VCF files.

Version 2.23.0 (22-Feb-2015)

	Added -k option to the closest tool to report the k-closest features in one or more -b files.

	Added -fd option to the closest tool to for the reporting of downstream features in one or more -b files. Requires -D to dictate how “downstream” should be defined.

	Added -fu option to the closest tool to for the reporting of downstream features in one or more -b files. Requires -D to dictate how “downstream” should be defined.

	Pierre Lindenbaum added a new split tool that will split an input file into multiple sub files. Unlike UNIX split, it can balance the chunking of the sub files not just by number of lines, but also by total number of base pairs in each sub file.

	Added a new spacing tool that reports the distances between features in a file.

	Jay Hesselberth added a -reverse option to the makewindows tool that reverses the order of the assigned window numbers.

	Fixed a bug that caused incorrect reporting of overlap for zero-length BED records. Thanks to @roryk.

	Fixed a bug that caused the map tool to not allow -b to be specified before -a. Thanks to @semenko.

	Fixed a bug in makewindows that mistakenly required -s with -n.

Version 2.22.1 (01-Jan-2015)

	When using -sorted with intersect, map, and closest, bedtools can now detect and warn you when your input datasets employ different chromosome sorting orders.

	Fixed multiple bugs in the new, faster closest tool. Specifically, the -iu, -id, and -D options were not behaving properly with the new “sweeping” algorithm that was implemented for the 2.22.0 release. Many thanks to Sol Katzman for reporting these issues and for providing a detailed analysis and example files.

	We FINALLY wrote proper documentation for the closest tool (http://bedtools.readthedocs.org/en/latest/content/tools/closest.html)

	Fixed bug in the tag tool when using -intervals, -names, or -scores. Thanks to Yarden Katz for reporting this.

	Fixed issues with chromosome boundaries in the slop tool when using negative distances. Thanks to @acdaugherty!

	Multiple improvements to the fisher tool. Added a -m option to the fisher tool to merge overlapping intervals prior to comparing overlaps between two input files. Thanks to@brentp

	Fixed a bug in makewindows tool requiring the use of -b with -s.

	Fixed a bug in intersect that prevented -split from detecting complete overlaps with -f 1. Thanks to @tleonardi .

	Restored the default decimal precision to the groupby tool.

	Added the -prec option to the merge and map tools to specific the decimal precision of the output.

Version 2.22.0 (12-Nov-2014)

	The “closest” tool now requires sorted files, but this requirement now enables it to simultaneously find the closest intervals from many (not just one) files.

	We now have proper support for “imprecise” SVs in VCF format. This addresses a long standing (sorry) limitation in the way bedtools handles VCF files.

Version 2.21.0 (18-Sep-2014)

	Added ability to intersect against multiple -b files in the intersect tool.

	Fixed a bug causing slowdowns in the -sorted option when using -split with very large split alignments.

	Added a new fisher tool to report a P-value associated with the significance of the overlaps between two interval sets. Thanks to @brentp!

	Added a “genome” file for GRCh38. Thanks @martijnvermaat!

	Fixed a bug in the -pct option of the slop tool. Thanks to @brentp!

	Tweak to the Makefile to accomodate Intel compilers. Thanks to @jmarshall.

	Many updates to the docs from the community. Thank you!

Version 2.20.1 (23-May-2014)

	Fixed a float rounding bug causing occassional off-by-one issues in the slop added by the slop tool. Thanks to @slw287r.

	Fixed a bug injected in 2.19 arising when files have a single line not ending in a newline. Thanks to @cwarden45.

Version 2.20.0 (22-May-2014)

	The merge tool now supports BAM input.

	The -n, -nms, and -scores options are deprecated in favor of the new, substantially more flexible, -c and -o options. See the docs [http://bedtools.readthedocs.org/en/latest/content/tools/merge.html].

	It now supports the -header option.

	It now supports the -S option.

	The map tool now supports BAM input.

	The jaccard tool is now ~3 times faster.

	It now supports the -split option.

	It now supports the -s option.

	It now supports the -S option.

	We have fixed several CLANG compiler issues/ Thanks to John Marshall for the thorough report.

	We added support for “X” and “=” CIGAR operators. Thanks to Pierre Lindenbaum.

	Fixed bugs for empty files.

	Improved the -incl option in the shuffle tool such that the distibution is much more random.

	Fixed a bug in slop when very large slop values are used.

Version 2.19.1 (6-Mar-2014)

	Bug fix to intersect causing BAM footers to be erroneously written when -b is BAM

	Speedup for the map tool.
- http://bedtools.readthedocs.org/en/latest/_images/map-speed-comparo.png

	Map tool now allows multiple columns and operations in a single run.
- http://bedtools.readthedocs.org/en/latest/content/tools/map.html#multiple-operations-and-columns-at-the-same-time

Version 2.19.0 (8-Feb-2014)

Bug Fixes

	Fixed a long standing bug in which the number of base pairs of overlap was incorrectly calculated when using the -wo option with the -split option. Thanks to many for reporting this.

	Fixed a bug in which certain flavors of unmapped BAM alignments were incorrectly rejected in the latest 2.18.* series. Thanks very much to Gabriel Pratt.

Enhancements

	Substantially reduced memory usage, especially when dealing with unsorted data. Memory usage ballooned in the 2.18.* series owing to default buffer sizes we were using in a custom string class. We have adjusted this and the memory usage has returned to 2.17.* levels while maintaining speed increases. Thanks so much to Ian Sudberry rightfully complaining about this!

New features

	The latest version of the “map” function is ~3X faster than the one available in version 2.17 and 2.18

	The map function now supports the “-split” option, as well as “absmin” and “absmax” operations.

	In addition, it supports multiple chromosome sorting criterion by supplying a genome file that defines the expected chromosome order. Here is an example of how to run map with datasets having chromosomes sorted in “version” order, as opposed to the lexicographical chrom order that is the norm.

Version 2.18.2 (8-Jan-2014)

bedtools

The changes to bedtools reflect fixes to compilation errors, performance enhancements for smaller files, and a bug fix for BAM files that lack a formal header. Our current focus for the 2.19.* release is is on addressing some standing bug/enhancements and also in updating some of the other more widely used tools (e.g., coverage, map, and substract) to use the new API. We will also continue to look into ways to improve performance while hopefully reducing memory usage for algorithms that work with unsorted data (thanks to Ian Sudberry for the ping!).

pybedtools

Ryan Dale has updated pybedtools to accomodate bedtools 2.18.*, added unit tests, and provided new functionality and bug fixes. The details for this release are here:
http://pythonhosted.org/pybedtools/changes.html

Version 2.18.1 (16-Dec-2013)

Fixes that address compilation errors with CLANG and force compilation of custom BamTools library.

Version 2.18.0 (13-Dec-2013)

The Google Code site is deprecated

It looks like the Google Code service is going the way of the venerable Google Reader. As such, we are moving the repository and all formal release tarballs to Github. We have started a new repository prosaically named “bedtools2”. The original bedtools repository will remain for historical purposes, but we created a new repository to distinguish the two code bases as they will become rather different over time.

https://github.com/arq5x/bedtools2

We gutted the core API and algorithms

Much of Neil’s hard work has been devoted to completely rewriting the core file/stream writing API to be much more flexible in the adoption of new formats. In addition, he has substantially improved many of the core algorithms for detecting interval intersections.

Improved performance

The 2.18.0 release leverages these improvements in the “intersect” tool. Forthcoming releases will see the new API applied to other tools, but we started with intersect as it is the most widely used tool in the suite.

Performance with sorted datasets. The “chromsweep” algorithm we use for detecting intersections is now 60 times faster than when it was first release in version 2.16.2, and is 15 times than the 2.17 release. This makes the algorithm slightly faster that the algorithm used in the bedops bedmap tool. As an example, the following [figure](https://dl.dropboxusercontent.com/u/515640/bedtools-intersect-sorteddata.png) demonstrates the speed when intersecting GENCODE exons against 1, 10, and 100 million BAM alignments from an exome capture experiment. Whereas in version 2.16.2 this wuld have taken 80 minutes, it now takes 80 seconds.

Greater flexibility. In addition, BAM, BED, GFF/GTF, or VCF files are now automatically detected whether they are a file, stream, or FIFO in either compressed or uncompressed form. As such, one now longer has specify -abam when using BAM input as the “A” file with intersect. Moreover, any file type can be used for either the A or
the B file.

Better support for different chromosome sorting criteria

Genomic analysis is plagued by different chromosome naming and sorting conventions. Prior to this release,
the -sorted option in the intersect tool required that the chromosomes were sorted in alphanumeric
order (e.g. chr1, chr10, etc. or 1, 10, etc.). Starting with this release, we now simply require by default
that the records are GROUPED by chromosome and that within each chromosome group, the records are sorted by
chromosome position. This will allow greater flexibility.

One problem that can arise however, is if two different files are each grouped by chromosome, yet the two
files follow a different chromosome order. In order to detect and enforce the same order, one can explicitly
state the expected chromosome order through the use of a genome (aka chromsizes) file. Please see the
documentation [here](http://bedtools.readthedocs.org/en/latest/content/tools/intersect.html#sorted-invoke-a-memory-efficient-algorithm-for-very-large-files) and [here](http://bedtools.readthedocs.org/en/latest/content/tools/intersect.html#g-define-an-alternate-chromosome-sort-order-via-a-genome-file) for examples.

New tools

1. The jaccard tool. While not exactly new, there have been improvements to the tool and there is finally
documentation. Read more here: http://bedtools.readthedocs.org/en/latest/content/tools/jaccard.html

	The reldist tool. Details here: http://bedtools.readthedocs.org/en/latest/content/tools/reldist.html

3. The sample tool. Uses reservoir sampling to randomly sample a specified number of records from BAM, BED,
VCF, and GFF/GTF files.

Enhancements

	Improvements in the consistency of the output of the merge tool. Thanks to @kcha.

2. A new -allowBeyondChromEnd option in the shuffle tool. Thanks to @stephenturner.
[docs](http://bedtools.readthedocs.org/en/latest/content/tools/shuffle.html#allowbeyondchromend-allow-records-to-extend-beyond-the-chrom-length)

	A new -noOverlapping option that prevents shuffled intervals from overlapping one another. Thanks to @brentp. [docs](http://bedtools.readthedocs.org/en/latest/content/tools/shuffle.html#nooverlapping-prevent-shuffled-intervals-from-overlapping)

	Allow the user to specify the maximum number of shuffling attempts via the -maxTries option in the shuffle tool.

	Various improvements to the documentation provided by manu different users. Thanks to all.

	Added the number of intersections (n_intersections) to the Jaccard output. Thanks to @brentp.

	Various improvements to the tag tool.

	Added the -N (remove any) option to the subtract tool.

Version 2.17.0 (3-Nov-2012)

New tools

We have added a new tool (bedtools “jaccard”) for measuring the Jaccard statistic
between two interval files. The Jaccard stat measures the ratio of the length
of the intersection over the length of the union of the two sets. In this
case, the union is measured as the sum of the lengths of the intervals in each
set minus the length of the intersecting intervals. As such, the Jaccard
statistic provides a “distance” measure between 0 (no intersections)
and 1 (self intersection). The higher the score, the more the two sets of
intervals overlap one another. This tool was motivated by Favorov et al, 2012.
For more details, see see PMID: 22693437.

We anticipate releasing other statistical measures in forthcoming releases.

New Features & enhancements

	The genome file drives the BAM header in “bedtools bedtobam”

	Substantially improvement the performance of the -sorted option in
“bedtools intersect” and “bedtools map”. For many applications,
bedtools is now nearly as fast as the BEDOPS suite when intersecting
pre-sorted data. This improvement is thanks to Neil Kindlon, a staff
scientist in the Quinlan lab.

	Tightened the logic for handling split (blocked) BAM and BED records

	
	Added ranged column selection to “bedtools groupby”. Thanks to Brent Pedersen”

	
	e.g., formerly “bedtools groupby -g 1,2,3,4,5”; now “-g 1-5”

	“bedtools getfasta” now properly extracts sequences based on blocked (BED12)
records (e.g., exons from genes in BED12 format).

	“bedtools groupby” now allows a header line in the input.

	With -N, the user can now force the closest interval to have a different name
field in “bedtools closest”

	With -A, the user can now force the subtraction of entire interval when
any overlap exists in “bedtools subtract”.

	“bedtools shuffle” can now shuffle BEDPE records.

	Improved random number generation.

	Added -split, -s, -S, -f, -r options to “bedtools multicov”

	Improvements to the regression testing framework.

	Standardized the tag reporting logic in “bedtools bamtobed”

	Improved the auto-detection of VCF format. Thanks to Michael James Clark.

Bug fixes

	Fixed a bug in bedtobam’s -bed12 mode.

	Properly include unaligned BAM alignments with “bedtools intersect“‘s -v option.

	Fixed off by one error in “bedtools closest“‘s -d option

4.”bedtools bamtobed” fails properly for non-existent file.

	Corrected missing tab in “bedtools annotate“‘s header.

	Allow int or uint tags in “bedtools bamtobed”

	“bedtools flank” no longer attempts to take flanks prior to the start of a chromosome.

	Eliminated an extraneous tab from “bedtools window” -c.

	Fixed a corner case in the -sorted algorithm.

10.Prevent numeric overflow in “bedtools coverage -hist”

Version 2.14.1-3 (2-Nov-2011)

Bug Fixes

	Corrected the help for closestBed. It now correctly reads -io instead of -no.

	Fixed regression in closestBed injected in version 2.13.4 whereby B features to the right of an A feature were missed.

New tool

	Added the multiIntersectBed tool for reporting common intervals among multiple sorted BED/GFF/VCF files.

Version 2.13.4 (26-Oct-2011)

Bug Fixes

	The -sorted option (chromsweep) in intersectBed now obeys -s and -S. I had neglected to implement that. Thanks to Paul Ryvkin for pointing this out.

	The -split option was mistakenly splitting of D CIGAR ops.

	The Makefile was not including zlib properly for newer versions of GCC. Thanks to Istvan Albert for pointing this out and providing the solution.

Improvements

	Thanks to Jacob Biesinger for a new option (-D) in closestBed that will report _signed_ distances. Moreover, the new option allows fine control over whether the distances are reported based on the reference genome or based on the strand of the A or B feature. Many thanks to Jacob.

	Thanks to some nice analysis from Paul Ryvkin, I realized that the -sorted option was using way too much memory in certain cases where there is a chromosome change in a sorted BED file. This has been corrected.

Version 2.13.3 (30-Sept-2011)

Bug Fixes

	intersectBed detected, but did not report overlaps when using BAM input and -bed.

Other

	Warning that -sorted trusts, but does not enforce that data is actually sorted.

Version 2.13.2 (23-Sept-2011)

New algorithm

	Preliminary release of the chrom_sweep algorithm.

New options

	genomeCoverageBed no longer requires a genome file when working with BAM input. It instead uses the BAM header.

	tagBam now has a -score option for annotating alignments with the BED “scores” field in annotation files. This overrides the default behavior, which is to use the -labels associated with the annotation files passed in on the command line.

Bug fixes

	Correct a bug that prevented proper BAM support in intersectBed.

	Improved detection of GFF features with negative coordinates.

Version 2.13.1 (6-Sept-2011)

New options

	tagBam now has -s and -S options for only annotating alignments with features on the same and opposite strand, respectively.

	tagBam now has a -names option for annotating alignments with the “name” field in annotation files. This overrides the default behavior, which is to use the -labels associated with the annotation files passed in on the command line. Currently, this works well with BED files, but given the limited metadata support for GFF files, annotating with -names and GFF files may not work as well as wished, depending on the type of GFF file used.

Version 2.13.0 (1-Sept-2011)

New tools

1. tagBam. This tool annotates a BAM file with custom tag fields based on overlaps with BED/GFF/VCF files.
For example:

$ tagBam -i aln.bam -files exons.bed introns.bed cpg.bed utrs.bed \
 -tags exonic intonic cpg utr \
 > aln.tagged.bam

For alignments that have overlaps, you should see new BAM tags like “YB:Z:exonic”, “YB:Z:cpg;utr”
2. multiBamCov. The new tool counts sequence coverage for multiple bams at specific loci defined in a BED/GFF/VCF file.
For example:

$ multiBamCov -bams aln.1.bam aln.2.bam aln3.bam -bed exons.bed
chr1 861306 861409 SAMD11 1 + 181 280 236
chr1 865533 865718 SAMD11 2 + 249 365 374
chr1 866393 866496 SAMD11 3 + 162 298 322

where the last 3 columns represent the number of alignments overlapping each interval from the three BAM file.

	The following options are available to control which types of alignments are are counted.

	
	-q

	Minimum mapping quality allowed. Default is 0.

	-D

	Include duplicate-marked reads. Default is to count non-duplicates only

	-F

	Include failed-QC reads. Default is to count pass-QC reads only

	-p

	Only count proper pairs. Default is to count all alignments with MAPQ
greater than the -q argument, regardless of the BAM FLAG field.

	
	nucBed. This new tool profiles the nucleotide content of intervals in a fasta file. The following information will be reported after each original BED/GFF/VCF entry:

	
	%AT content

	%GC content

	Number of As observed

	Number of Cs observed

	Number of Gs observed

	Number of Ts observed

	Number of Ns observed

	Number of other bases observed

	The length of the explored sequence/interval.

	The sequence extracted from the FASTA file. (optional, if -seq is used)

	The number of times a user defined pattern was observed. (optional, if -pattern is used.)

	For example:

	$ nucBed -fi ~/data/genomes/hg18/hg18.fa -bed simrep.bed | head -3
#1_usercol 2_usercol 3_usercol 4_usercol 5_usercol 6_usercol 7_pct_at 8_pct_gc 9_num_A 10_num_C 11_num_G 12_num_T 13_num_N 14_num_oth 15_seq_len
chr1 10000 10468 trf 789 + 0.540598 0.459402 155 96 119 98 0 0 468
chr1 10627 10800 trf 346 + 0.445087 0.554913 54 55 41 23 0 0 173

	One can also report the sequence itself:

	$ nucBed -fi ~/data/genomes/hg18/hg18.fa -bed simrep.bed -seq | head -3
#1_usercol 2_usercol 3_usercol 4_usercol 5_usercol 6_usercol 7_pct_at 8_pct_gc 9_num_A 10_num_C 11_num_G 12_num_T 13_num_N 14_num_oth 15_seq_len 16_seq
chr1 10000 10468 trf 789 + 0.540598 0.459402 155 96 119 98 0 0 468 ccagggg…
chr1 10627 10800 trf 346 + 0.445087 0.554913 54 55 41 23 0 0 173 TCTTTCA…

	Or, one can count the number of times that a specific pattern occur in the intervals (reported as the last column):

	$ nucBed -fi ~/data/genomes/hg18/hg18.fa -bed simrep.bed -pattern CGTT | head
#1_usercol 2_usercol 3_usercol 4_usercol 5_usercol 6_usercol 7_pct_at 8_pct_gc 9_num_A 10_num_C 11_num_G 12_num_T 13_num_N 14_num_oth 15_seq_len 16_user_patt_count
chr1 10000 10468 trf 789 + 0.540598 0.459402 155 96 119 98 0 0 468 0
chr1 10627 10800 trf 346 + 0.445087 0.554913 54 55 41 23 0 0 173 0
chr1 10757 10997 trf 434 + 0.370833 0.629167 49 70 81 40 0 0 240 0
chr1 11225 11447 trf 273 + 0.463964 0.536036 44 86 33 59 0 0 222 0
chr1 11271 11448 trf 187 + 0.463277 0.536723 37 69 26 45 0 0 177 0
chr1 11283 11448 trf 199 + 0.466667 0.533333 37 64 24 40 0 0 165 0
chr1 19305 19443 trf 242 + 0.282609 0.717391 17 57 42 22 0 0 138 1
chr1 20828 20863 trf 70 + 0.428571 0.571429 10 7 13 5 0 0 35 0
chr1 30862 30959 trf 79 + 0.556701 0.443299 35 22 21 19 0 0 97 0

New options

	Support for named pipes and FIFOs.

	“-” is now allowable to indicate that data is being sent via stdin.

	Multiple tools. Added new -S option to annotateBed, closestBed, coverageBed, intersectBed, pairToBed, subtractBed, and windowBed (-Sm). This new option does the opposite of the -s option: that is, overlaps are only processed if they are on _opposite_ strands. Thanks to Sol Katzman for the great suggestion. Very useful for certain RNA-seq analyses.

	coverageBed. Added a new -counts option to coverageBed that only reports the count of overlaps, instead of also computing fractions, etc. This is much faster and uses much less memory.

	fastaFromBed. Added a new -full option that uses the full BED entry when naming each output sequence. Also removed the -fo option such that all output is now written to stdout.

	
	genomeCoverageBed.

	
	Added new -scale option that allows the coverage values to be scaled by a constant. Useful for normalizing coverage with RPM, RPKM, etc. Thanks to Ryan Dale for the useful suggestion.

	
	Added new -5, -3, -trackline, -trackopts, and -dz options. Many thanks to Assaf Gordon for these improvements.

	-5: Calculate coverage of 5” positions (instead of entire interval)
-3: Calculate coverage of 3” positions (instead of entire interval).
-trackline: Adds a UCSC/Genome-Browser track line definition in the first line of the output.
-trackopts: rites additional track line definition parameters in the first line.
-dz: Report the depth at each genome position with zero-based coordinates, instead of zero-based.

	
	closestBed. See below, thanks to Brent Pedersen, Assaf Gordon, Ryan Layer and Dan Webster for the helpful discussions.

	
	closestBed now reports _all_ features in B that overlap A by default. This allows folks to decide which is the “best” overlapping feature on their own. closestBed now has a “-io” option that ignores overlapping features. In other words, it will only report the closest, non-overlapping feature.

An example:

$ cat a.bed
chr1 10 20

$ cat b.bed
chr1 15 16
chr1 16 40
chr1 100 1000
chr1 200 1000

$ bin/closestBed -a a.bed -b b.bed
chr1 10 20 chr1 15 16
chr1 10 20 chr1 16 40

$ bin/closestBed -a a.bed -b b.bed -io
chr1 10 20 chr1 100 1000

Updates

	Updated to the latest version of BamTools. This allows greater functionality and will facilitate new options and tools in the future.

Bug Fixes

	GFF files cannot have zero-length features.

	Corrected an erroneous check on the start coordinates in VCF files. Thanks to Jan Vogel for the correction.

	mergeBed now always reports output in BED format.

	Updated the text file Tokenizer function to yield 15% speed improvement.

	Various tweaks and improvements.

Version 2.12.0 (April-3-2011)

New Tool

	Added new tool called “flankBed”, which allows one to extract solely the flanking regions that are upstream and downstream of a given feature. Unlike slopBed, flankBed does not include the original feature itself. A new feature is created for each flabking region. For example, imagine the following feature:

chr1 100 200

The following would create features for solely the 10 bp regions flanking this feature.
$ bin/flankBed -i a.bed -b 10 -g genomes/human.hg18.genome
chr1 90 100
chr1 200 210

In contrast, slopBed would return:
bin/slopBed -i a.bed -b 10 -g genomes/human.hg18.genome
chr1 90 210

FlankBed has all of the same features as slopBed.

New Features

1. Added new “-scores” feature to mergeBed. This allows one to take the sum, min, max,
mean, median, mode, or antimode of merged feature scores. In addition, one can use the “collapse” operation to get a comma-separated list of the merged scores.
2. mergeBed now tolerates multiple features in a merged block to have the same feature name.
3. Thanks to Erik Garrison’s “fastahack” library, fastaFromBed now reports its output in the order of the input file.
4. Added a “-n” option to bed12ToBed6, which forces the score field to be the 1-based block number from the original BED12 feature. This is useful for tracking exon numbers, for example.
5. Thanks to Can Alkan, added a new “-mc” option to maskFastaFromBed that allows one to define a custom mask character, such as “X” (-n X).

Bug Fixes

	Thanks to Davide Cittaro, intersectBed and windowBed now properly capture unmapped BAM alignments when using the “-v” option.

	ClosestBed now properly handles cases where b.end == a.start

	Thanks to John Marshall, the default constructors are much safer and less buggy.

	Fixed bug in shuffleBed that complained about a lack of -incl and -excl.

	Fixed bug in shuffleBed for features that would go beyond the end of a chromosome.

	Tweaked bedToIgv to make it more Windows friendly.

Version 2.11.2 (January-31-2010)

Fixed a coordinate reporting bug in coverageBed.
Added “max distance (-d)” argument back to the new implementation of mergeBed.

Version 2.11.0 (January-21-2010)

Enhancements:

	Support for zero length features (i.e., start = end)
- For example, this allows overlaps to be detected with insertions in the reference genome, as reported by dbSNP.

	Both 8 and 9 column GFF files are now supported.

	slopBed can now extend the size of features by a percentage of it’s size (-pct) instead of just a fixed number of bases.

	Two improvements to shuffleBed:
3a. A -f (overlapFraction) parameter that defines the maximum overlap that a randomized feature can have with an -excl feature. That is, if a chosen locus has more than -f overlap with an -excl feature, a new locus is sought.
3b. A new -incl option (thanks to Michael Hoffman and Davide Cittaro) that, defines intervals in which the randomized features should be placed. This is used instead of placing the features randomly in the genome. Note that a genome file is still required so that a randomized feature does not go beyond the end of a chromosome.

	bamToBed can now optionally report the CIGAR string as an additional field.

	pairToPair can now report the entire paired feature from the B file when overlaps are found.

	complementBed now reports all chromosomes, not just those with features in the BED file.

	Improved randomization seeding in shuffleBed. This prevents identical output for runs of shuffleBed that
occur in the same second (often the case).

Bug Fixes:

	Fixed the “BamAlignmentSupportData is private” compilation issue.

	Fixed a bug in windowBed that caused positions to run off the end of a chromosome.

Major Changes:

	The groupBy command is now part of the filo package (https://github.com/arq5x/filo) and will no longer be distributed with BEDTools.

Version 2.10.0 (September-21-2010)

New tools

1. annotateBed. Annotates one BED/VCF/GFF file with the coverage and number of overlaps observed
from multiple other BED/VCF/GFF files. In this way, it allows one to ask to what degree one feature coincides with multiple other feature types with a single command. For example, the following will annotate the fraction of the variants in variants.bed that are covered by genes, conservaed regions and know variation, respectively.
$ annotateBed -i variants.bed -files genes.bed conserv.bed known_var.bed

This tool was suggested by Can Alkan and was motivated by the example source code that he kindly provided.

New features

	New frequency operations (freqasc and freqdesc) added to groupBy. These operations report a histogram of the frequency that each value is observed in a given column.

	Support for writing uncompressed bam with the -ubam option.

	Shorthand arguments for groupBy (-g eq. -grp, -c eq. -opCols, -o eq. -opCols).

	In addition, all BEDTools that require only one main input file (the -i file) will assume that input is coming from standard input if the -i parameter is ignored.

Bug fixes

	Increased the precision of the output from groupBy.

Version 2.9.0 (August-16-2010)

New tools

	unionBedGraphs. This is a very powerful new tool contributed by Assaf Gordon from CSHL. It will combine/merge multiple BEDGRAPH files into a single file, thus allowing comparisons of coverage (or any text-value) across multiple samples.

New features

	New “distance feature” (-d) added to closestBed by Erik Arner. In addition to finding the closest feature to each feature in A, the -d option will report the distance to the closest feature in B. Overlapping features have a distance of 0.

	New “per base depth feature” (-d) added to coverageBed. This reports the per base coverage (1-based) of each feature in file B based on the coverage of features found in file A. For example, this could report the per-base depth of sequencing reads (-a) across each capture target (-b).

Bug Fixes

	Fixed bug in closestBed preventing closest features from being found for A features with start coordinates < 2048000. Thanks to Erik Arner for pointing this out.

	Fixed minor reporting annoyances in closestBed. Thanks to Erik Arner.

	Fixed typo/bug in genomeCoverageBed that reported negative coverage owing to numeric overflow. Thanks to Alexander Dobin for the detailed bug report.

	Fixed other minor parsing and reporting bugs/annoyances.

Version 2.8.3 (July-25-2010)

	Fixed bug that caused some GFF files to be misinterpreted as VCF. This prevented the detection of overlaps.

	Added a new “-tag” option in bamToBed that allows one to choose the _numeric_ tag that will be used to populate the score field. For example, one could populate the score field with the alignment score with “-tag AS”.

	Updated the BamTools API.

Version 2.8.2 (July-18-2010)

	Fixed a bug in bedFile.h preventing GFF strands from being read properly.

	Fixed a bug in intersectBed that occasionally caused spurious overlaps between BAM alignments and BED features.

	Fixed bug in intersectBed causing -r to not report the same result when files are swapped.

	Added checks to groupBy to prevent the selection of improper opCols and groups.

	Fixed various compilation issues, esp. for groupBy, bedToBam, and bedToIgv.

	Updated the usage statements to reflect bed/gff/vcf support.

	Added new fileType functions for auto-detecting gzipped or regular files. Thanks to Assaf Gordon.

Version 2.8.1 (July-05-2010)

	Added bedToIgv.

Version 2.8.0 (July-04-2010)

	Proper support for “split” BAM alignments and “blocked” BED (aka BED12) features. By using the “-split” option, intersectBed, coverageBed, genomeCoverageBed, and bamToBed will now correctly compute overlaps/coverage solely for the “split” portions of BAM alignments or the “blocks” of BED12 features such as genes.

	Added native support for the 1000 Genome Variant Calling Format (VCF) version 4.0.

	New bed12ToBed6 tool. This tool will convert each block of a BED12 feature into discrete BED6 features.

	Useful new groupBy tool. This is a very useful new tool that mimics the “groupBy” clause in SQL. Given a file or stream that is sorted by the appropriate “grouping columns”, groupBy will compute summary statistics on another column in the file or stream. This will work with output from all BEDTools as well as any other tab-delimited file or stream. Example summary operations include: sum, mean, stdev, min, max, etc. Please see the help for the tools for examples. The functionality in groupBy was motivated by helpful discussions with Erik Arner at Riken.

	Improvements to genomeCoverageBed. Applied several code improvements provided by Gordon Assaf at CSHL. Most notably, beyond the several efficiency and organizational changes he made, he include a “-strand” option which allows one to specify that coverage should only be computed on either the “+” or the “-” strand.

	Fixed a bug in closestBed found by Erik Arner (Riken) which incorrectly reported “null” overlaps for features that did not have a closest feature in the B file.

	Fixed a careless bug in slopBed also found by Erik Arner (Riken) that caused an infinite loop when the “-excl” option was used.

	Reduced memory consumption by ca. 15% and run time by ca. 10% for most tools.

	Several code-cleanliness updates such as templated functions and common tyedefs.

	Tweaked the genome binning approach such that 16kb bins are the most granular.

Version 2.7.1 (May-06-2010)

Fixed a typo that caused some compilers to fail on closestBed.

Version 2.7.0 (May-05-2010)

General:
1. “Gzipped” BED and GFF files are now supported as input by all BEDTools. Such files must end in “.gz”.
2. Tools that process BAM alignments now uniformly compute an ungapped alignment end position based on the BAM CIGAR string. Specifically, “M”, “D” and “N” operations are observed when computing the end position.
3. bamToBed requires the BAM file to be sorted/grouped by read id when creating BEDPE output. This allows the alignments end coordinate for each end of the pair to be properly computed based on its CIGAR string. The same requirement applies to pairToBed.
4. Updated manual.
5. Many silent modifications to the code that improve clarity and sanity-checking and facilitate future additions/modifications.

New Tools:
1. bedToBam. This utility will convert BED files to BAM format. Both “blocked” (aka BED12) and “unblocked” (e.g. BED6) formats are acceptable. This allows one to, for example, compress large BED files such as dbSNP into BAM format for efficient visualization.

	Changes to existing tools:

	
	intersectBed

	
	Added -wao option to report 0 overlap for features in A that do not intersect any features in B. This is an extension of the -wo option.

	bamToBed

	
	Requires that BAM input be sorted/grouped by read name.

	pairToBed

	
	Requires that BAM input be sorted/grouped by read name.

	Allows use of minimum mapping quality or total edit distance for score field.

	windowBed

	
	Now supports BAM input.

	genomeCoverageBed

	
	-bga option. Thanks to Gordon Assaf for the suggestion.

	Eliminated potential seg fault.

	Acknowledgements:

	
	Gordon Assaf: for suggesting the -bga option in genomeCoverageBed and for testing the new bedToBam utility.

	Ivan Gregoretti: for helping to expedite the inclusion of gzip support.

	Can Alkan: for suggesting the addition of the -wao option to intersectBed.

	James Ward: for pointing out that bedToBam did not need to create “dummy” seq and qual entries.

Version 2.6.1 (Mar-29-2010)

	Fixed a careless command line parsing bug in coverageBed.

Version 2.6.0 (Mar-23-2010)

Specific improvements / additions to tools

	intersectBed. Added an option (-wo) that reports the number of overlapping bases for each intersection b/w A and B files. Not sure why this wasn’t added sooner; it’s obvious.

2. coverageBed
- native BAM support
- can now report a histogram (-hist) of coverage for each feature in B. Useful for exome sequencing projects, for example. Thanks for the excellent suggestion from Jose Bras
- faster

3. genomeCoverageBed
- native BAM support
- can now report coverage in BEDGRAPH format (-bg). Thanks for the code and great suggestion from Gordon Assaf, CSHL.

4. bamToBed
- support for “blocked” BED (aka BED12) format. This facilitates the creation of BED entries for “split” alignments (e.g. RNAseq or SV). Thanks to Ann Loraine, UNCC for test data to support this addition.

5. fastaFromBed
- added the ability to extract sequences from a FASTA file according to the strand in the BED file. That is, when “-” the extracted sequence is reverse complemented. Thanks to Thomas Doktor, U. of Southern Denmark for the code and suggestion.

6. *NEW* overlap
- newly added tool for computing the overlap/distance between features on the same line.For example:

$ cat test.out
chr1 10 20 A chr1 15 25 B
chr1 10 20 C chr1 25 35 D

$ cat test.out | overlaps -i stdin -cols 2,3,6,7
chr1 10 20 A chr1 15 25 B 5
chr1 10 20 C chr1 25 35 D -5

Bug fixes

	Fixed a bug in pairToBed when comparing paired-end BAM alignments to BED annotations and using the “notboth” option.

	Fixed an idiotic bug in intersectBed that occasionally caused segfaults when blank lines existed in BED files.

	Fixed a minor bug in mergeBed when using the -nms option.

General changes

	Added a proper class for genomeFiles. The code is much cleaner and the tools are less sensitive to minor problems with the formatting of genome files. Per Gordon Assaf’s wise suggestion, the tools now support “chromInfo” files directly downloaded from UCSC. Thanks Gordon—I disagreed at first, but you were right.

	Cleaned up some of the code and made the API a bit more streamlined. Will facilitate future tool development, etc.

Version 2.5.4 (Mar-3-2010)

	Fixed an insidious bug that caused malform BAM output from intersectBed and pairToBed. The previous BAM files worked fine with samtools as BAM input, but when piped in as SAM, there was an extra tab that thwarted conversion from SAM back to BAM. Many thanks to Ivan Gregoretti for reporting this bug. I had never used the BAM output in this way and thus never caught the bug!

Version 2.5.3 (Feb-19-2010)

	Fixed bug to “re-allow” track and “browser” lines.

	Fixed bug in reporting BEDPE overlaps.

	Fixed bug when using type “notboth” with BAM files in pairToBed.

	When comparing BAM files to BED/GFF annotations with intersectBed or pairToBed, the __aligned__ sequence is used, rather than the __original__ sequence.

	Greatly increased the speed of pairToBed when using BAM alignments.

	Fixed a bug in bamToBed when reporting edit distance from certain aligners.

Version 2.5.2 (Feb-2-2010)

	The start and end coordinates for BED and BEDPE entries created by bamToBed are now based on the __aligned__ sequence, rather than the original sequence. It’s obvious, but I missed it originally…sorry.

	Added an error message to mergeBed preventing one from using “-n” and “-nms” together.

	Fixed a bug in pairToBed that caused neither -type “notispan” nor “notospan” to behave as described.

Version 2.5.1 (Jan-28-2010)

	Fixed a bug in the new GFF/BED determinator that caused a segfault when start = 0.

Version 2.5.0 (Jan-27-2010)

	Added support for custom BED fields after the 6th column.

	Fixed a command line parsing bug in pairToBed.

	Improved sanity checking.

Version 2.4.2 (Jan-23-2010)

	Fixed a minor bug in mergeBed when -nms and -s were used together.

	Improved the command line parsing to prevent the occasional segfault.

Version 2.4.1 (Jan-12-2010)

	Updated BamTools libraries to remove some compilation issues on some systems/compilers.

Version 2.4.0 (Jan-11-2010)

	Added BAM support to intersectBed and pairToBed

	New bamToBed feature.

	Added support for GFF features

	Added support for “blocked” BED format (BED12)

	Wrote complete manual and included it in distribution.

	Fixed several minor bugs.

	Cleaned up code and improved documentation.

Version 2.3.3 (12/17/2009)

Rewrote complementBed to use a slower but much simpler approach. This resolves several bugs with the previous logic.

Version 2.3.2 (11/25/2009)

	Fixed a bug in subtractBed that prevent a file from subtracting itself when the following is used:

	$ subtractBed -a test.bed -b test.bed

Version 2.3.1 (11/19/2009)

Fixed a typo in closestBed that caused all nearby features to be returned instead of just the closest one.

Version 2.3.0 (11/18/2009)

	
	Added four new tools:

	
	shuffleBed. Randomly permutes the locations of a BED file among a genome. Useful for testing for significant overlap enrichments.

	slopBed. Adds a requested number of base pairs to each end of a BED feature. Constrained by the size of each chromosome.

	maskFastaFromBed. Masks a FASTA file based on BED coordinates. Useful making custom genome files from targeted capture experiment, etc.

	pairToPair. Returns overlaps between two paired-end BED files. This is great for finding structural variants that are private or shared among samples.

	Increased the speed of intersectBed by nearly 50%.

	Improved corrected some of the help messages.

	Improved sanity checking for BED entries.

Version 2.2.4 (10/27/2009)

1. Updated the mergeBed documentation to describe the -names option which allows one to report the names of the
features that were merged (separated by semicolons).

Version 2.2.3 (10/23/2009)

1. Changed windowBed to optionally define “left” and “right” windows based on strand. For example by default, -l 100 and -r 500 will
add 100 bases to the left (lower coordinates) of a feature in A when scanning for hits in B and 500 bases to the right (higher coordinates).

However if one chooses the -sw option (windows bases on strandedness), the behavior changes. Assume the above example except that a feature in A
is on the negative strand (“-“). In this case, -l 100, -r 500 and -sw will add 100 bases to the right (higher coordinates) and 500 bases to the left (lower coordinates).

In addition, there is a separate option (-sm) that can optionally force hits in B to only be tracked if they are on the same strand as A.

NOTE: This replaces the previous -s option and may affect existing pipelines.

Version 2.2.2 (10/20/2009)

	Improved the speed of genomeCoverageBed by roughly 100 fold. The memory usage is now less than 2.0 Gb.

Version 2.2.1

1. Fixed a very obvious bug in subtractBed that caused improper behavior when a feature in A was overlapped by more than one feature in B.
Many thanks to folks in the Hannon lab at CSHL for pointing this out.

Version 2.2.0

Notable changes in this release

	
	coverageBed will optionally only count features in BED file A (e.g. sequencing reads) that overlap with

	the intervals/windows in BED file B on the same strand. This has been requested several times recently
and facilitates CHiP-Seq and RNA-Seq experiments.

	
	intersectBed can now require a minimum __reciprocal__ overlap between intervals in BED A and BED B. For example,

	previously, if one used -f 0.90, it required that a feature in B overlap 90% of the feature in A for the “hit”
to be reported. If one adds the -r (reciprocal) option, the hit must also cover 90% of the feature in B. This helps
to exclude overlaps between say small features in A and large features in B:

A ==========
B **

-f 0.50 (Reported), whereas -f 0.50 -r (Not reported)

	
	The score field has been changed to be a string. While this deviates from the UCSC definition, it allows one to track

	much more meaningful information about a feature/interval. For example, score could now be:

7.31E-05 (a p-value)
0.334577 (mean enrichment)
2:2.2:40:2 (several values encoded in a string)

	
	closestBed now, by default, reports __all__ intervals in B that overlap equally with an interval in A. Previously, it

	merely reported the first such feature that appeared in B. Here’s a cartoon explaining the difference.

	Several other minor changes to the algorithms have been made to increase speed a bit.

Version 2.1.2

	Fixed yet another bug in the parsing of “track” or “browser” lines. Sigh…

	Change the “score” column (i.e. column 5) to b stored as a string. While this deviates
from the UCSC convention, it allows significantly more information to be packed into the column.

Version 2.1.1

	Added limits.h to bedFile.h to fix compilation issues on some systems.

	Fixed bug in testing for “track” or “browser” lines.

Version 2.1.0

	Fixed a bug in peIntersectBed that prevented -a from being correctly handled when passed via stdin.

	Added new functionality to coverageBed that calculates the density of coverage.

	Fixed bug in geneomCoverageBed.

Version 2.0.1

	Added the ability to retain UCSC browser track/browser headers in BED files.

Version 2.0

	Sped up the file parsing. ~10-20% increase in speed.

	Created reportBed() as a common method in the bedFile class. Cleans up the code quite nicely.

	Added the ability to compare BED files accounting for strandedness.

	Paired-end intersect.

	Fixed bug that prevented overlaps from being reported when the overlap fraction requested is 1.0

Version 1.2, 04/27/2009.

	
	Added subtractBed.

	
	Fixed bug that prevented “split” overlaps from being reported.

	Prevented A from being reported if >=1 feature in B completely spans it.

	Added linksBed.

	Added the ability to define separate windows for upstream and downstream to windowBed.

Version 1.1, 04/23/2009.

Initial release.

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 The BEDTools suite

The BEDTools suite

bedtools consists of a suite of sub-commands that are invoked as follows:

bedtools [sub-command] [options]

For example, to intersect two BED files, one would invoke the following:

bedtools intersect -a a.bed -b b.bed

The full list of bedtools sub-commands.

	annotate

	bamtobed

	bamtofastq

	bed12tobed6

	bedpetobam

	bedtobam

	closest

	cluster

	complement

	coverage

	expand

	flank

	fisher

	genomecov

	getfasta

	groupby

	igv

	intersect

	jaccard

	links

	makewindows

	map

	maskfasta

	merge

	multicov

	multiinter

	nuc

	overlap

	pairtobed

	pairtopair

	random

	reldist

	shift

	shuffle

	slop

	sort

	subtract

	summary

	tag

	unionbedg

	window

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 annotate

annotate

bedtools annotate, well, annotates one BED/VCF/GFF file with the coverage
and number of overlaps observed from multiple other BED/VCF/GFF files.
In this way, it allows one to ask to what degree one feature coincides with
multiple other feature types with a single command.

Usage and option summary

Usage:

bedtools annotate [OPTIONS] -i <BED/GFF/VCF> -files FILE1 FILE2 FILE3 ... FILEn

(or):

annotateBed [OPTIONS] -i <BED/GFF/VCF> -files FILE1 FILE2 FILE3 ... FILEn

	Option

	Description

	-names

	A list of names (one per file) to describe each file in -i. These names will be printed as a header line.

	-counts

	Report the count of features in each file that overlap -i. Default behavior is to report the fraction of -i covered by each file.

	-both

	Report the count of features followed by the % coverage for each annotation file. Default is to report solely the fraction of -i covered by each file.

	-s

	Force strandedness. That is, only include hits in A that overlap B on the same strand. By default, hits are included without respect to strand.

	-S

	Require different strandedness. That is, only report hits in B that overlap A on the _opposite_ strand. By default, overlaps are reported without respect to strand.

Default behavior - annotate one file with coverage from others.

By default, the fraction of each feature covered by each annotation file is
reported after the complete feature in the file to be annotated.

$ cat variants.bed
chr1 100 200 nasty 1 -
chr2 500 1000 ugly 2 +
chr3 1000 5000 big 3 -

$ cat genes.bed
chr1 150 200 geneA 1 +
chr1 175 250 geneB 2 +
chr3 0 10000 geneC 3 -

$ cat conserve.bed
chr1 0 10000 cons1 1 +
chr2 700 10000 cons2 2 -
chr3 4000 10000 cons3 3 +

$ cat known_var.bed
chr1 0 120 known1 -
chr1 150 160 known2 -
chr2 0 10000 known3 +

$ bedtools annotate -i variants.bed -files genes.bed conserve.bed known_var.bed
chr1 100 200 nasty 1 - 0.500000 1.000000 0.300000
chr2 500 1000 ugly 2 + 0.000000 0.600000 1.000000
chr3 1000 5000 big 3 - 1.000000 0.250000 0.000000

-count Report the count of hits from the annotation files

$ bedtools annotate -counts -i variants.bed -files genes.bed conserve.bed known_var.bed
chr1 100 200 nasty 1 - 2 1 2
chr2 500 1000 ugly 2 + 0 1 1
chr3 1000 5000 big 3 - 1 1 0

-both Report both the count of hits and the fraction covered from the annotation files

$ bedtools annotate -both -i variants.bed -files genes.bed conserve.bed known_var.bed
#chr start end name score +/- cnt1 pct1 cnt2 pct2 cnt3 pct3
chr1 100 200 nasty 1 - 2 0.500000 1 1.000000 2 0.300000
chr2 500 1000 ugly 2 + 0 0.000000 1 0.600000 1 1.000000
chr3 1000 5000 big 3 - 1 1.000000 1 0.250000 0 0.000000

-s Restrict the reporting to overlaps on the same strand.

$ bedtools annotate -s -i variants.bed -files genes.bed conserve.bed known_var.bed
chr1 100 200 nasty 1 - 0.000000 0.000000 0.000000
chr2 500 1000 ugly 2 + 0.000000 0.000000 0.000000
chr3 1000 5000 big 3 - 1.000000 0.000000 0.000000

-S Restrict the reporting to overlaps on the opposite strand.

$ bedtools annotate -S -i variants.bed -files genes.bed conserve.bed known_var.bed
chr1 100 200 nasty 1 - 0.500000 1.000000 0.300000
chr2 500 1000 ugly 2 + 0.000000 0.600000 1.000000
chr3 1000 5000 big 3 - 0.000000 0.250000 0.000000

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 bamtobed

bamtobed

bedtools bamtobed is a conversion utility that converts sequence alignments
in BAM format into BED, BED12, and/or BEDPE records.

Usage and option summary

Usage:

bedtools bamtobed [OPTIONS] -i <BAM>

(or):

bamToBed [OPTIONS] -i <BAM>

	Option

	Description

	-bedpe

	Write BAM alignments in BEDPE format. Only one alignment from
paired-end reads will be reported. Specifically, if each mate
is aligned to the same chromosome, the BAM alignment reported
will be the one where the BAM insert size is greater than zero.
When the mate alignments are interchromosomal, the
lexicographically lower chromosome will be reported first.
Lastly, when an end is unmapped, the chromosome and strand will
be set to “.” and the start and end coordinates will be set
to -1. By default, this is disabled and the output will be
reported in BED format.

	-mate1

	When writing BEDPE (-bedpe) format,
always report mate one as the first BEDPE “block”.

	-bed12

	Write “blocked” BED (a.k.a. BED12) format. This will convert
“spliced” BAM alignments (denoted by the “N” CIGAR operation)
to BED12. Forces -split.

	-split

	Report each portion of a “split” BAM (i.e., having an “N” CIGAR
operation) alignment as a distinct BED intervals.

	-splitD

	Report each portion of a “split” BAM while obeying both “N” CIGAR
and “D” operation. Forces -split.

	-ed

	Use the “edit distance” tag (NM) for the BED score field.
Default for BED is to use mapping quality. Default for BEDPE is
to use the minimum of the two mapping qualities for the pair.
When -ed is used with -bedpe, the total edit distance from the
two mates is reported.

	-tag

	Use other numeric BAM alignment tag for BED score. Default
for BED is to use mapping quality. Disallowed with BEDPE output.

	-color

	An R,G,B string for the color used with BED12 format. Default
is (255,0,0).

	-cigar

	Add the CIGAR string to the BED entry as a 7th column.

Default behavior

By default, each alignment in the BAM file is converted to a 6 column BED. The
BED “name” field is comprised of the RNAME field in the BAM alignment. If mate
information is available, the mate (e.g., “/1” or “/2”) field will be appended
to the name.

$ bedtools bamtobed -i reads.bam | head -3
chr7 118970079 118970129 TUPAC_0001:3:1:0:1452#0/1 37 -
chr7 118965072 118965122 TUPAC_0001:3:1:0:1452#0/2 37 +
chr11 46769934 46769984 TUPAC_0001:3:1:0:1472#0/1 37 -

-tag Set the score field based on BAM tags

One can override the choice of the BAM MAPQ as the result BED record’s score
field by using the -tag option. In the example below, we use the -tag
option to select the BAM edit distance (the NM tag) as the score
column in the resulting BED records.

$ bedtools bamtobed -i reads.bam -tag NM | head -3
chr7 118970079 118970129 TUPAC_0001:3:1:0:1452#0/1 1 -
chr7 118965072 118965122 TUPAC_0001:3:1:0:1452#0/2 3 +
chr11 46769934 46769984 TUPAC_0001:3:1:0:1472#0/1 1 -

-bedpe Set the score field based on BAM tags

The -bedpe option converts BAM alignments to BEDPE format, thus allowing
the two ends of a paired-end alignment to be reported on a single text line.
Specifically, if each mate is aligned to the same chromosome,
the BAM alignment reported will be the one where the BAM insert size is greater
than zero. When the mate alignments are interchromosomal, the lexicographically
lower chromosome will be reported first. Lastly, when an end is unmapped, the
chromosome and strand will be set to “.” and the start and end coordinates will
be set to -1.

Note

When using this option, it is required that the BAM
file is sorted/grouped by the read name. This allows bamToBed
to extract correct alignment coordinates for each end based on
their respective CIGAR strings. It also assumes that the
alignments for a given pair come in groups of twos. There is
not yet a standard method for reporting multiple alignments
using BAM. bamToBed will fail if an aligner does not report
alignments in pairs.

 bamtofastq

bamtofastq

bedtools bamtofastq is a conversion utility for extracting FASTQ records
from sequence alignments in BAM format.

Note

If you are using CRAM as input, you will need to specify
the full path describing the location of the relevant reference genome in FASTA format via the CRAM_REFERENCE environment variable. For example:

export CRAM_REFERENCE=/path/to/ref/g1k_v37_decoy.fa

 bed12tobed6

bed12tobed6

bed12ToBed6 is a convenience tool that converts BED features in BED12 (a.k.a. “blocked” BED
features such as genes) to discrete BED6 features. For example, in the case of a gene with six exons,
bed12ToBed6 would create six separate BED6 features (i.e., one for each exon).

Usage and option summary

Usage:

bed12ToBed6 [OPTIONS] -i <BED12>

	Option

	Description

	-i

	The BED12 file that should be split into discrete BED6 features. Use “stdin” when using piped input.

Default behavior

Figure:

head data/knownGene.hg18.chr21.bed | tail -n 3
chr21 10079666 10120808 uc002yiv.1 0 - 10081686 1 0 1 2 0 6 0 8 0 4 528,91,101,215, 0,1930,39750,40927,
chr21 10080031 10081687 uc002yiw.1 0 - 10080031 1 0 0 8 0 0 3 1 0 2 200,91, 0,1565,
chr21 10081660 10120796 uc002yix.2 0 - 10081660 1 0 0 8 1 6 6 0 0 3 27,101,223,0,37756,38913,

head data/knownGene.hg18.chr21.bed | tail -n 3 | bed12ToBed6 -i stdin
chr21 10079666 10080194 uc002yiv.1 0 -
chr21 10081596 10081687 uc002yiv.1 0 -
chr21 10119416 10119517 uc002yiv.1 0 -
chr21 10120593 10120808 uc002yiv.1 0 -
chr21 10080031 10080231 uc002yiw.1 0 -
chr21 10081596 10081687 uc002yiw.1 0 -
chr21 10081660 10081687 uc002yix.2 0 -
chr21 10119416 10119517 uc002yix.2 0 -
chr21 10120573 10120796 uc002yix.2 0 -

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 bedpetobam

bedpetobam

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 bedtobam

bedtobam

bedToBam converts features in a feature file to BAM format. This is useful as an efficient means of
storing large genome annotations in a compact, indexed format for visualization purposes.

Usage and option summary

Usage:

bedToBam [OPTIONS] -i <BED/GFF/VCF> -g <GENOME> > <BAM>

	Option

	Description

	-mapq

	Set a mapping quality (SAM MAPQ field) value for all BED entries. Default: 255

	-ubam

	Write uncompressed BAM output. The default is write compressed BAM output.

	-bed12

	Indicate that the input BED file is in BED12 (a.k.a “blocked” BED) format. In this case, bedToBam will convert blocked BED features (e.g., gene annotations) into “spliced” BAM alignments by creating an appropriate CIGAR string.

Default behavior

The default behavior is to assume that the input file is in unblocked format. For example:

head -5 rmsk.hg18.chr21.bed
chr21 9719768 9721892 ALR/Alpha 1004 +
chr21 9721905 9725582 ALR/Alpha 1010 +
chr21 9725582 9725977 L1PA3 3288 +
chr21 9726021 9729309 ALR/Alpha 1051 +
chr21 9729320 9729809 L1PA3 3897 -

bedToBam -i rmsk.hg18.chr21.bed -g human.hg18.genome > rmsk.hg18.chr21.bam

samtools view rmsk.hg18.chr21.bam | head -5
ALR/Alpha 0 chr21 9719769 255 2124M * 0 0 * *
ALR/Alpha 0 chr21 9721906 255 3677M * 0 0 * *
L1PA3 0 chr21 9725583 255 395M * 0 0 * *
ALR/Alpha 0 chr21 9726022 255 3288M * 0 0 * *
L1PA3 16 chr21 9729321 255 489M * 0 0 * *

Creating “spliced” BAM entries from “blocked” BED features

Optionally, bedToBam will create spliced BAM entries from “blocked” BED features by using the
-bed12 option. This will create CIGAR strings in the BAM output that will be displayed as “spliced”
alignments. The image illustrates this behavior, as the top track is a BAM representation (using
bedToBam) of a BED file of UCSC genes.

For example:

bedToBam -i knownGene.hg18.chr21.bed -g human.hg18.genome -bed12 > knownGene.bam

samtools view knownGene.bam | head -2
uc002yip.1 16 chr21 9928614 2 5 5

298M1784N71M1411N93M3963N80M1927N106M3608N81M1769N62M11856N89M98N82M816N61M6910N65M
738N64M146N100M1647N120M6478N162M1485N51M6777N60M9274N54M880N54M1229N54M2377N54M112
68N58M2666N109M2885N158M * 0 0 * *
uc002yiq.1 16 chr21 9928614 2 5 5

298M1784N71M1411N93M3963N80M1927N106M3608N81M1769N62M11856N89M98N82M816N61M6910N65M
738N64M146N100M1647N120M6478N162M1485N51M6777N60M10208N54M1229N54M2377N54M11268N58M
2666N109M2885N158M * 0 0 * *

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 closest

closest

Similar to intersect, closest searches for overlapping features in A and B. In the event that
no feature in B overlaps the current feature in A, closest will report the nearest (that is, least
genomic distance from the start or end of A) feature in B. For example, one might want to find which
is the closest gene to a significant GWAS polymorphism. Note that closest will report an
overlapping feature as the closest—that is, it does not restrict to closest non-overlapping feature. The following iconic “cheatsheet” summarizes the functionality available through the various options provided by the closest tool.

[image: ../../_images/closest-glyph.png]

Note

bedtools closest requires that all input files are presorted data by chromosome and
then by start position (e.g., sort -k1,1 -k2,2n in.bed > in.sorted.bed
for BED files).

 cluster

cluster

[image: ../../_images/cluster-glyph.png]

Similar to merge, cluster report each set of overlapping or
“book-ended” features in an interval file. In contrast to merge,
cluster does not flatten the cluster of intervals into a new meta-interval;
instead, it assigns an unique cluster ID to each record in each cluster. This
is useful for having fine control over how sets of overlapping intervals in
a single interval file are combined.

Note

bedtools cluster requires that you presort your data by chromosome and
then by start position (e.g., sort -k1,1 -k2,2n in.bed > in.sorted.bed
for BED files).

 complement

complement

[image: ../../_images/complement-glyph.png]

bedtools complement returns all intervals in a genome that are not
covered by at least one interval in the input BED/GFF/VCF file.

See also

merge

 coverage

coverage

The bedtools coverage tool computes both the depth and breadth of coverage of features in file B on the features
in file A. For example, bedtools coverage can compute the coverage of sequence alignments (file B) across 1
kilobase (arbitrary) windows (file A) tiling a genome of interest. One advantage that bedtools coverage
offers is that it not only counts the number of features that overlap an interval in file A, it also
computes the fraction of bases in the interval in A that were overlapped by one or more features. Thus,
bedtools coverage also computes the breadth of coverage observed for each interval in A.

Note

If you are trying to compute coverage for very large files and are having trouble
with excessive memory usage, please presort your data by chromosome and
then by start position (e.g., sort -k1,1 -k2,2n in.bed > in.sorted.bed
for BED files) and then use the -sorted option. This invokes a
memory-efficient algorithm designed for large files.

 expand

expand

Please enable JavaScript to view the comments powered by Disqus.

comments powered by Disqus

 flank

flank

[image: ../../_images/flank-glyph.png]

bedtools flank will create two new flanking intervals for each interval in
a BED/GFF/VCF file. Note that flank will restrict the created flanking
intervals to the size of the chromosome (i.e. no start < 0 and no end >
chromosome size).

Note

In order to prevent creating intervals that violate chromosome boundaries,
bedtools flank requires a genome file defining the length of each
chromosome or contig.

 fisher

fisher

Perform fisher’s exact test on the number of overlaps/unique intervals between
2 files.

Traditionally, in order to test whether 2 sets of intervals are related
spatially, we resort to shuffling the genome and checking the simulated
(shuffled) versus the observed. We can do the same analytically for many
scenarios using
Fisher’s Exact Test [http://en.wikipedia.org/wiki/Fisher's_exact_test] .

This implementation can calculate the number of overlaps and the number
of intervals unique to each file and it infers (or accepts) the number
that are not present in each file.

Given a pair of input files -a and -b in the usual BedTools parlance:

$ cat a.bed
chr1 10 20
chr1 30 40
chr1 51 52

$ cat b.bed
chr1 15 25
chr1 51 52

And a genome of 500 bases:

$ echo -e "chr1\t500" > t.genome

We may wish to know if the amount of overlap between the 2 sets of intervals is
more than we would expect given their coverage and the size of the genome. We
can do this with fisher as:

$ bedtools fisher -a a.bed -b b.bed -g t.genome
Number of query intervals: 3
Number of db intervals: 2
Number of overlaps: 2
Number of possible intervals (estimated): 37
phyper(2 - 1, 3, 37 - 3, 2, lower.tail=F)
Contingency Table Of Counts
#___
| in -b | not in -b |
in -a | 2 | 1 |
not in -a | 0 | 34 |
#___
p-values for fisher's exact test
left right two-tail ratio
1 0.0045045 0.0045045 inf

Where we can see the constructed contingency table and the pvalues for left, right
and two-tail tests.
From here, we can say that given 500 bases of genome, it is unlikely that we
would see as many overlaps as we do if the intervals from a and b were not
related.

Note

the total number of possible intervals in the above example was
estimated to be 37. This is based on a heuristic that uses the mean sizes of
intervals in the a and b sets and the size of the genome. The reported
p-value will depend greatly on this. Below, we show how well the reported
value matches with simulations.

 genomecov

genomecov

[image: ../../_images/genomecov-glyph.png]

bedtools genomecov computes histograms (default), per-base reports (-d)
and BEDGRAPH (-bg) summaries of feature coverage (e.g., aligned sequences)
for a given genome.

Note

1. If using BED/GFF/VCF, the input (-i) file must be grouped by
chromosome. A simple sort -k 1,1 in.bed > in.sorted.bed will suffice.
Also, if using BED/GFF/VCF, one must provide